918 resultados para Intelligent systems


Relevância:

60.00% 60.00%

Publicador:

Resumo:

It is well known that the dimensions of the pelvic bones depend on the gender and vary with the age of the individual. Indeed, and as a matter of fact, this work will focus on the development of an intelligent decision support system to predict individual’s age based on pelvis’ dimensions criteria. On the one hand, some basic image processing technics were applied in order to extract the relevant features from pelvic X-rays. On the other hand, the computational framework presented here was built on top of a Logic Programming approach to knowledge representation and reasoning, that caters for the handling of incomplete, unknown, or even self-contradictory information, complemented with a Case Base approach to computing.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Intelligent systems are currently inherent to the society, supporting a synergistic human-machine collaboration. Beyond economical and climate factors, energy consumption is strongly affected by the performance of computing systems. The quality of software functioning may invalidate any improvement attempt. In addition, data-driven machine learning algorithms are the basis for human-centered applications, being their interpretability one of the most important features of computational systems. Software maintenance is a critical discipline to support automatic and life-long system operation. As most software registers its inner events by means of logs, log analysis is an approach to keep system operation. Logs are characterized as Big data assembled in large-flow streams, being unstructured, heterogeneous, imprecise, and uncertain. This thesis addresses fuzzy and neuro-granular methods to provide maintenance solutions applied to anomaly detection (AD) and log parsing (LP), dealing with data uncertainty, identifying ideal time periods for detailed software analyses. LP provides deeper semantics interpretation of the anomalous occurrences. The solutions evolve over time and are general-purpose, being highly applicable, scalable, and maintainable. Granular classification models, namely, Fuzzy set-Based evolving Model (FBeM), evolving Granular Neural Network (eGNN), and evolving Gaussian Fuzzy Classifier (eGFC), are compared considering the AD problem. The evolving Log Parsing (eLP) method is proposed to approach the automatic parsing applied to system logs. All the methods perform recursive mechanisms to create, update, merge, and delete information granules according with the data behavior. For the first time in the evolving intelligent systems literature, the proposed method, eLP, is able to process streams of words and sentences. Essentially, regarding to AD accuracy, FBeM achieved (85.64+-3.69)%; eGNN reached (96.17+-0.78)%; eGFC obtained (92.48+-1.21)%; and eLP reached (96.05+-1.04)%. Besides being competitive, eLP particularly generates a log grammar, and presents a higher level of model interpretability.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The term Artificial intelligence acquired a lot of baggage since its introduction and in its current incarnation is synonymous with Deep Learning. The sudden availability of data and computing resources has opened the gates to myriads of applications. Not all are created equal though, and problems might arise especially for fields not closely related to the tasks that pertain tech companies that spearheaded DL. The perspective of practitioners seems to be changing, however. Human-Centric AI emerged in the last few years as a new way of thinking DL and AI applications from the ground up, with a special attention at their relationship with humans. The goal is designing a system that can gracefully integrate in already established workflows, as in many real-world scenarios AI may not be good enough to completely replace its humans. Often this replacement may even be unneeded or undesirable. Another important perspective comes from, Andrew Ng, a DL pioneer, who recently started shifting the focus of development from “better models” towards better, and smaller, data. He defined his approach Data-Centric AI. Without downplaying the importance of pushing the state of the art in DL, we must recognize that if the goal is creating a tool for humans to use, more raw performance may not align with more utility for the final user. A Human-Centric approach is compatible with a Data-Centric one, and we find that the two overlap nicely when human expertise is used as the driving force behind data quality. This thesis documents a series of case-studies where these approaches were employed, to different extents, to guide the design and implementation of intelligent systems. We found human expertise proved crucial in improving datasets and models. The last chapter includes a slight deviation, with studies on the pandemic, still preserving the human and data centric perspective.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Artificial Intelligence (AI) and Machine Learning (ML) are novel data analysis techniques providing very accurate prediction results. They are widely adopted in a variety of industries to improve efficiency and decision-making, but they are also being used to develop intelligent systems. Their success grounds upon complex mathematical models, whose decisions and rationale are usually difficult to comprehend for human users to the point of being dubbed as black-boxes. This is particularly relevant in sensitive and highly regulated domains. To mitigate and possibly solve this issue, the Explainable AI (XAI) field became prominent in recent years. XAI consists of models and techniques to enable understanding of the intricated patterns discovered by black-box models. In this thesis, we consider model-agnostic XAI techniques, which can be applied to Tabular data, with a particular focus on the Credit Scoring domain. Special attention is dedicated to the LIME framework, for which we propose several modifications to the vanilla algorithm, in particular: a pair of complementary Stability Indices that accurately measure LIME stability, and the OptiLIME policy which helps the practitioner finding the proper balance among explanations' stability and reliability. We subsequently put forward GLEAMS a model-agnostic surrogate interpretable model which requires to be trained only once, while providing both Local and Global explanations of the black-box model. GLEAMS produces feature attributions and what-if scenarios, from both dataset and model perspective. Eventually, we argue that synthetic data are an emerging trend in AI, being more and more used to train complex models instead of original data. To be able to explain the outcomes of such models, we must guarantee that synthetic data are reliable enough to be able to translate their explanations to real-world individuals. To this end we propose DAISYnt, a suite of tests to measure synthetic tabular data quality and privacy.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Distributed control systems consist of sensors, actuators and controllers, interconnected by communication networks and are characterized by a high number of concurrent process. This work presents a proposal for a procedure to model and analyze communication networks for distributed control systems in intelligent building. The approach considered for this purpose is based on the characterization of the control system as a discrete event system and application of coloured Petri net as a formal method for specification, analysis and verification of control solutions. With this approach, we develop the models that compose the communication networks for the control systems of intelligent building, which are considered the relationships between the various buildings systems. This procedure provides a structured development of models, facilitating the process of specifying the control algorithm. An application example is presented in order to illustrate the main features of this approach.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The activity of Control Center operators is important to guarantee the effective performance of Power Systems. Operators’ actions are crucial to deal with incidents, especially severe faults like blackouts. In this paper, we present an Intelligent Tutoring approach for training Portuguese Control Center operators in tasks like incident analysis and diagnosis, and service restoration of Power Systems. Intelligent Tutoring System (ITS) approach is used in the training of the operators, having into account context awareness and the unobtrusive integration in the working environment. Several Artificial Intelligence techniques were criteriously used and combined together to obtain an effective Intelligent Tutoring environment, namely Multiagent Systems, Neural Networks, Constraint-based Modeling, Intelligent Planning, Knowledge Representation, Expert Systems, User Modeling, and Intelligent User Interfaces.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Cyber-Physical Systems and Ambient Intelligence are two of the most important and emerging paradigms of our days. The introduction of renewable sources gave origin to a completely different dimension of the distribution generation problem. On the other hand, Electricity Markets introduced a different dimension in the complexity, the economic dimension. Our goal is to study how to proceed with the Intelligent Training of Operators in Power Systems Control Centres, considering the new reality of Renewable Sources, Distributed Generation, and Electricity Markets, under the emerging paradigms of Cyber-Physical Systems and Ambient Intelligence. We propose Intelligent Tutoring Systems as the approach to deal with the intelligent training of operators in these new circumstances.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Energy Resources Management can play a very relevant role in future power systems in SmartGrid context, with high penetration of distributed generation and storage systems. This paper deals with the importance of resources management in incident situation. The system to consider a high penetration of distributed generation, demand response, storage units and network reconfiguration. A case study evidences the advantages of using a flexible SCADA to control the energy resources in incident situation.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The idea behind creating this special issue on real world applications of intelligent tutoring systems was to bring together in a single publication some of the most important examples of success in the use of ITS technology. This will serve as a reference to all researchers working in the area. It will also be an important resource for the industry, showing the maturity of ITS technology and creating an atmosphere for funding new ITS projects. Simultaneously, it will be valuable to academic groups, motivating students for new ideas of ITS and promoting new academic research work in the area.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Dissertação apresentada para obtenção do Grau de Doutor em Sistemas de Informação Industriais, Engenharia Electrotécnica, pela Universidade Nova de Lisboa, Faculdade de Ciências e Tecnologia

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Transportation research makes a difference for Iowans and the nation. Implementation of cost-effective research projects contributes to a transportation network that is safer, more efficient, and longer lasting. Working in cooperation with our partners from universities, industry, other states, and FHWA, as well as participation in the Transportation Research Board (TRB), provides benefits for every facet of the DOT. This allows us to serve our communities and the traveling public more effectively. Pooled fund projects allow leveraging of funds for higher returns on investments. In 2011, Iowa led thirteen active pooled fund studies, participated in twenty-one others, and was wrapping-up, reconciling, and closing out an additional 6 Iowa Led pooled fund studies. In addition, non-pooled fund SPR projects included approximately 8 continued, 9 new, and over a dozen reoccurring initiatives such as the technical transfer/training program. Additional research is managed and conducted by the Office of Traffic and Safety and other departments in the Iowa DOT.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Transportation research makes a difference for Iowans and the nation. Implementation of cost-effective research projects contributes to a transportation network that is safer, more efficient, and longer lasting. Working in cooperation with our partners from universities, industry, other states, and FHWA, as well as participation in the Transportation Research Board (TRB), provides benefits for every facet of the DOT. This allows us to serve our communities and the traveling public more effectively. Pooled fund projects allow leveraging of funds for higher returns on investments. In 2011, Iowa led thirteen active pooled fund studies, participated in twenty-one others, and was wrapping-up, reconciling, and closing out an additional 6 Iowa Led pooled fund studies. In addition, non-pooled fund SPR projects included approximately 8 continued, 9 new, and over a dozen reoccurring initiatives such as the technical transfer/training program. Additional research is managed and conducted by the Office of Traffic and Safety and other departments in the Iowa DOT.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In the last decade, Intelligent Transportation Systems (ITS) have increasingly been deployed in work zones by state departments of transportation. Also known as smart work zone systems they improve traffic operations and safety by providing real-time information to travelers, monitoring traffic conditions, and managing incidents. Although there have been numerous ITS deployments in work zones, a framework for evaluating the effectiveness of these deployments does not exist. To justify the continued development and implementation of smart work zone systems, this study developed a framework to determine ITS effectiveness for specific work zone projects. The framework recommends using one or more of five performance measures: diversion rate, delay time, queue length, crash frequency, and speed. The monetary benefits and costs of ITS deployment in a work zone can then be computed using the performance measure values. Such ITS computations include additional considerations that are typically not present in standard benefit-cost computations. The proposed framework will allow for consistency in performance measures across different ITS studies thus allowing for comparisons across studies or for meta analysis. In addition, guidance on the circumstances under which ITS deployment is recommended for a work zone is provided. The framework was illustrated using two case studies: one urban work zone on I-70 and one rural work zone on I-44, in Missouri. The goals of the two ITS deployments were different – the I-70 ITS deployment was targeted at improving mobility whereas the I-44 deployment was targeted at improving safety. For the I-70 site, only permanent ITS equipment that was already in place was used for the project and no temporary ITS equipment was deployed. The permanent DMS equipment serves multiple purposes, and it is arguable whether that cost should be attributed to the work zone project. The data collection effort for the I-70 site was very significant as portable surveillance captured the actual diversion flows to alternative routes. The benefit-cost ratio for the I-70 site was 2.1 to 1 if adjusted equipment costs were included and 6.9 to 1 without equipment costs. The safety-focused I-44 ITS deployment had an estimated benefit-cost ratio of 3.2 to 1.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The Laboratory of Intelligent Machine researches and develops energy-efficient power transmissions and automation for mobile construction machines and industrial processes. The laboratory's particular areas of expertise include mechatronic machine design using virtual technologies and simulators and demanding industrial robotics. The laboratory has collaborated extensively with industrial actors and it has participated in significant international research projects, particularly in the field of robotics. For years, dSPACE tools were the lonely hardware which was used in the lab to develop different control algorithms in real-time. dSPACE's hardware systems are in widespread use in the automotive industry and are also employed in drives, aerospace, and industrial automation. But new competitors are developing new sophisticated systems and their features convinced the laboratory to test new products. One of these competitors is National Instrument (NI). In order to get to know the specifications and capabilities of NI tools, an agreement was made to test a NI evolutionary system. This system is used to control a 1-D hydraulic slider. The objective of this research project is to develop a control scheme for the teleoperation of a hydraulically driven manipulator, and to implement a control algorithm between human and machine interaction, and machine and task environment interaction both on NI and dSPACE systems simultaneously and to compare the results.