994 resultados para Integrated seminar
Resumo:
During the course of preparation of a master plan for the transportation networks in Bangalore city, mapping the various initiatives and interventions planned towards addressing mobility, existing situation and implications of some of the proposed interventions was analysed. The inferences are based on existing transportation network; synthesis of various transportation related studies and proposed infrastructure initiatives (road works) in Bangalore. Broadly, they can be summarized as following five aspects: I. Need for ~Sreclassifying~T existing road networks (arterial and sub-arterial) with effective geospatial database in the back-end. II. The proposed Core Ring Road at surface grade may not be feasible. III. Current interventions encouraging more independent motorable transport by way of road widening, construction of underpasses, flyovers and grade-separators would not ease traffic congestion when addressed in isolation. IV. Factors affecting time and cost-overruns in infrastructure projects and ways to tackle are discussed. V. Initiatives required for addressing effective planning for operations recommended.
Resumo:
A new 8-node serendipity quadrilateral plate bending element (MQP8) based on the Mindlin-Reissner theory for the analysis of thin and moderately thick plate bending problems using Integrated Force Method is presented in this paper. The performance of this new element (MQP8) is studied for accuracy and convergence by analyzing many standard benchmark plate bending problems. This new element MQP8 performs excellent in both thin and moderately thick plate bending situations. And also this element is free from spurious/zero energy modes and free from shear locking problem.
Resumo:
The influence of electric field and temperature on power consumption of piezoelectric actuated integrated structure is studied by using a single degree of freedom mass-spring-damper system model coupled with a piezoactuator. The material lead zirconate titanate, is considered as it is capable of producing relatively high strains (e.g., 3000 mu epsilon). Actuators are often subject to high electric fields to increase the induced strain produced, resulting in field dependant piezoelectric coefficient d(31), dielectric coefficient epsilon(33) and dissipation factor delta. Piezostructures are also likely to be used across a wide range of temperatures in aerospace and undersea operations. Again, the piezoelectric properties can vary with temperature. Recent experimental studies by physics researchers have looked at the effect of high electric field and temperature on piezoelectric properties. These properties are used together with an impedance based power consumption model. Results show that including the nonlinear variation of dielectric permittivity and dissipation factor with electric field is important. Temperature dependence of the dielectric constant also should be considered.
Resumo:
This paper presents a flexible and integrated planning tool for active distribution network to maximise the benefits of having high level s of renewables, customer engagement, and new technology implementations. The tool has two main processing parts: “optimisation” and “forecast”. The “optimization” part is an automated and integrated planning framework to optimize the net present value (NPV) of investment strategy for electric distribution network augmentation over large areas and long planning horizons (e.g. 5 to 20 years) based on a modified particle swarm optimization (MPSO). The “forecast” is a flexible agent-based framework to produce load duration curves (LDCs) of load forecasts for different levels of customer engagement, energy storage controls, and electric vehicles (EVs). In addition, “forecast” connects the existing databases of utility to the proposed tool as well as outputs the load profiles and network plan in Google Earth. This integrated tool enables different divisions within a utility to analyze their programs and options in a single platform using comprehensive information.
Resumo:
We present a low power gas sensor system on CMOS platform consisting of micromachined polysilicon microheater, temperature controller circuit, resistance readout circuit and SnO2 transducer film. The design criteria for different building blocks of the system is elaborated The microheaters are optimized for temperature uniformity as well as static and dynamic response. The electrical equivalent model for the microheater is derived by extracting thermal and mechanical poles through extensive laser doppler vibrometer measurements. The temperature controller and readout circuit are realized on 130nm CMOS technology The temperature controller re-uses the heater as a temperature sensor and controls the duty cycle of the waveform driving the gate of the power MOSFET which supplies heater current. The readout circuit, with subthreshold operation of the MOSFETs, is based oil resistance to time period conversion followed by frequency to digital converter Subthreshold operatin of MOSFETs coupled with sub-ranging technique, achieves ultra low power consumption with more than five orders of magnitude dynamic range RF sputtered SnO2 film is optimized for its microstructure to achive high sensitivity to sense LPG gas.
Resumo:
A comprehensive study was conducted on potential systems of integrated building utilities and transport power solutions that can simultaneously contain rising electricity, hot water and personal transport costs for apartment residents. The research developed the Commuter Energy and Building Utilities System (CEBUS) and quantified the economic, social and environmental benefits of incorporating such a system in future apartment developments. A decision support tool was produced to assist the exploration of the CEBUS design variants. A set of implementation guidelines for CEBUS was also developed for the property development industry.
Resumo:
The international trend towards an increasingly standards-based approach to higher education and the resultant focus on the assurance of learning in tertiary programs have generated a strong emphasis on the assessment of outcomes across the higher education sector. In legal education, curriculum reform is highly prevalent internationally as a result of various reviews of legal education. As legal education focuses more on the attainment of a broader set of outcomes encompassing soft skills, capabilities and attributes, more authentic assessment will need to be developed appropriate to this new environment, meaning that modes of assessment with strong application in real-life settings should be preferred.
Resumo:
This report summarises the development of an Unmanned Aerial System and an integrated Wireless Sensor Network (WSN), suitable for the real world application in remote sensing tasks. Several aspects are discussed and analysed to provide improvements in flight duration, performance and mobility of the UAV, while ensuring the accuracy and range of data from the wireless sensor system.
Resumo:
Optimal allocation of water resources for various stakeholders often involves considerable complexity with several conflicting goals, which often leads to multi-objective optimization. In aid of effective decision-making to the water managers, apart from developing effective multi-objective mathematical models, there is a greater necessity of providing efficient Pareto optimal solutions to the real world problems. This study proposes a swarm-intelligence-based multi-objective technique, namely the elitist-mutated multi-objective particle swarm optimization technique (EM-MOPSO), for arriving at efficient Pareto optimal solutions to the multi-objective water resource management problems. The EM-MOPSO technique is applied to a case study of the multi-objective reservoir operation problem. The model performance is evaluated by comparing with results of a non-dominated sorting genetic algorithm (NSGA-II) model, and it is found that the EM-MOPSO method results in better performance. The developed method can be used as an effective aid for multi-objective decision-making in integrated water resource management.
Resumo:
An analysis and design study using Shape Memory Alloy (SMA) wire integrated beam and its buckling shape control are reported. The dynamical system performance is analyzed with a mathematical set-up involving nonlocal and rate sensitive kinetics of phase transformation in the SMA wire. A standard phenomenological constitutive model reported by Brinson (1993) is modified by considering certain consistency conditions in the material property tensors and by eliminating spurious singularity. Considering the inhomogeneity effects, a finite element model of the SMA wire is developed. Simulations are carried out to study the buckling shape control of a beam integrated with SMA wire.
Resumo:
The drying of fruit and vegetables is a subject of great importance. Dried fruit and vegetables have gained commercial importance, and their growth on a commercial scale has become an important sector of the agricultural industry. However, food drying is one of the most energy intensive processes of the major industrial process and accounts for up to 15 % of all industrial energy usage. Due to increasingly high electricity prices and environmental concern, a dryer using traditional energy sources is not a feasible option anymore. Therefore, an alternative/renewable energy source is needed. In this regard, an integrated solar drying system that includes highly efficient double-pass counter flow v-groove solar collector, conical-shaped rock-bed thermal storage, auxiliary heater, the centrifugal fan and the drying chamber has been designed and constructed. Mathematical model for all the individual components as well as an integrated model combining all components of the drying system has been developed. Mathematical equations were solved using MATLAB program. This paper presents the analytical model and key finding of the simulation.
Resumo:
While there is evidence that science and non-science background students display small differences in performance in basic and clinical sciences, early in a 4-year, graduate entry medical program, this lessens with time. With respect to anatomy knowledge, there are no comparable data as to the impact previous anatomy experience has on the student perception of the anatomy practical learning environment. A study survey was designed to evaluate student perception of the anatomy practical program and its impact on student learning, for the initial cohort of a new medical school. The survey comprised 19 statements requiring a response using a 5-point Likert scale, in addition to a free text opportunity to provide opinion of the perceived educational value of the anatomy practical program. The response rate for a total cohort of 82 students was 89%. The anatomy practical program was highly valued by the students in aiding their learning of anatomy, as indicated by the high mean scores for all statements (range: 4.04-4.7). There was a significant difference between the students who had and had not studied a science course prior to entering medicine, with respect to statements that addressed aspects of the course related to its structure, organization, variety of resources, linkage to problem-based learning cases, and fairness of assessment. Nonscience students were more positive compared to those who had studied science before (P levels ranging from 0.004 to 0.035). Students less experienced in anatomy were more challenged in prioritizing core curricular knowledge. © 2011 Wiley-Liss, Inc.
Resumo:
FET based MEMS microphones comprise of a flexible diaphragm that works as the moving gate of the transistor. The integrated electromechanical transducer can be made more sensitive to external sound pressure either by increasing the mechanical or the electrical sensitivities. We propose a method of increasing the overall sensitivity of the microphone by increasing its electrical sensitivity. The proposed microphone uses the transistor biased in the sub-threshold region where the drain current depends exponentially on the difference between the gate-to-source voltage and the threshold voltage. The device is made more sensitive without adding any complexity in the mechanical design of the diaphragm.