865 resultados para Insulin Sensitivity


Relevância:

60.00% 60.00%

Publicador:

Resumo:

We aimed to investigate the possible role of creatine (CR) supplementation in counteracting dexamethasone-induced muscle wasting and insulin resistance in rats. Also, we examined whether CR intake would modulate molecular pathways involved in muscle remodeling and insulin signaling. Animals were randomly divided into four groups: (1) dexamethasone (DEX); (2) control pair-fed (CON-PF); (3) dexamethasone plus CR (DEX-CR); and (4) CR pair-fed (CR-PF). Dexamethasone (5 mg/kg/day) and CR (5 g/kg/day) were given via drinking water for 7 days. Plantaris and extensor digitorum longus (EDL) muscles were removed for analysis. Plantaris and EDL muscle mass were significantly reduced in the DEX-CR and DEX groups when compared with the CON-PF and CR-PF groups (P < 0.05). Dexamethasone significantly decreased phospho-Ser(473)-Akt protein levels compared to the CON-PF group (P < 0.05) and CR supplementation aggravated this response (P < 0.001). Serum glucose was significantly increased in the DEX group when compared with the CON-PF group (DEX 7.8 +/- A 0.6 vs. CON-PF 5.2 +/- A 0.5 mmol/l; P < 0.05). CR supplementation significantly exacerbated hyperglycemia in the dexamethasone-treated animals (DEX-CR 15.1 +/- A 2.4 mmol/l; P < 0.05 vs. others). Dexamethasone reduced GLUT-4 translocation when compared with the CON-PF and CR-PF (P < 0.05) groups and this response was aggravated by CR supplementation (P < 0.05 vs. others). In conclusion, supplementation with CR resulted in increased insulin resistance and did not attenuate muscle wasting in rats treated with dexamethasone. Given the contrast with the results of human studies that have shown benefits of CR supplementation on muscle atrophy and insulin sensitivity, we suggest caution when extrapolating this animal data to human subjects.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background: In this study we evaluated the effects of carnitine and vitamin E supplementation on blood glucose levels in young rats submitted to exhaustive exercise stress. Methods: Wistar rats were divided into four groups: 1) control group; 2) exercise stress group; 3) exercise stress + Vitamin E and; 4) exercise stress + carnitine group. Rats from the group 3 and 4 were treated with gavage administration of 1 mL of Vitamin E (5mg/kg) and carnitine (5mg/kg) for seven consecutive days. Animals from groups 2, 3 and 4 were submitted to a bout of swimming exhaustive exercise stress. We analyzed blood glucose levels after exercise stress. Results: Blood glucose levels after exercise stress were significantly increased in the groups treated with Vitamine E and carnitine (control group: 98.7 +/- 9mg/dL vs. stress group: 84.2 +/- 11 mg/dL vs. carnitine + stress group: 147.4 +/- 15 mg/dL vs. vintamin E + stress: 158.3 +/- 7 mg/dL; p<0.0001). Conclusion: Vitamin E and carnitine supplementation attenuate the hypoglycemia induced by exercise in young rats submitted to exhaustive exercise stress.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Considering the different potential benefits of divergent fiber ingredients, the effect of 3 fiber sources on energy and macronutrient digestibility, fermentation product formation, postprandial metabolite responses, and colon histology of overweight cats (Felis catus) fed kibble diets was compared. Twenty-four healthy adult cats were assigned in a complete randomized block design to 2 groups of 12 animals, and 3 animals from each group were fed 1 of 4 of the following kibble diets: control (CO; 11.5% dietary fiber), beet pulp (BP; 26% dietary fiber), wheat bran (WB; 24% dietary fiber), and sugarcane fiber (SF; 28% dietary fiber). Digestibility was measured by the total collection of feces. After 16 d of diet adaptation and an overnight period without food, blood glucose, cholesterol, and triglyceride postprandial responses were evaluated for 16 h after continued exposure to food. On d 20, colon biopsies of the cats were collected under general anesthesia. Fiber addition reduced food energy and nutrient digestibility. Of all the fiber sources, SF had the least dietary fiber digestibility (P < 0.05), causing the largest reduction of dietary energy digestibility (P < 0.05). The greater fermentability of BP resulted in reduced fecal DM and pH, greater fecal production [g/(cat x d); as-is], and greater fecal concentration of acetate, propionate, and lactate (P < 0.05). For most fecal variables, WB was intermediate between BP and SF, and SF was similar to the control diet except for an increased fecal DM and firmer feces production for the SF diet (P < 0.05). Postprandial evaluations indicated reduced mean glucose concentration and area under the glucose curve in cats fed the SF diet (P < 0.05). Colon mucosa thickness, crypt area, lamina propria area, goblet cell area, crypt mean size, and crypt in bifurcation did not vary among the diets. According to the fiber solubility and fermentation rates, fiber sources can induce different physiological responses in cats, reduce energy digestibility, and favor glucose metabolism (SF), or improve gut health (BP).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A low-protein, high-carbohydrate (LPHC) diet for 15 days increased the lipid content in the carcass and adipose tissues of rats. The aim of this work was to investigate the mechanisms of this lipid increase in the retroperitoneal white adipose tissue (RWAT) of these animals. The LPHC diet induced an approximately two- and tenfold increase in serum corticosterone and TNF-alpha, respectively. The rate of de novo fatty acid (FA) synthesis in vivo was reduced (50%) in LPHC rats, and the lipoprotein lipase activity increased (100%). In addition, glycerokinase activity increased (60%), and the phosphoenolpyruvate carboxykinase content decreased (27%). Basal [U-C-14]-glucose incorporation into glycerol-triacylglycerol did not differ between the groups; however, in the presence of insulin, [U-C-14]-glucose incorporation increased by 124% in adipocytes from only control rats. The reductions in IRS1 and AKT content as well as AKT phosphorylation in the RWAT from LPHC rats and the absence of an insulin response suggest that these adipocytes have reduced insulin sensitivity. The increase in NE turnover by 45% and the lack of a lipolytic response to NE in adipocytes from LPHC rats imply catecholamine resistance. The data reveal that the increase in fat storage in the RWAT of LPHC rats results from an increase in FA uptake from circulating lipoproteins and glycerol phosphorylation, which is accompanied by an impaired lipolysis that is activated by NE.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Thiazolidinediones (TZDs) act through peroxisome proliferator activated receptor (PPAR) gamma to increase insulin sensitivity in type 2 diabetes (T2DM), but deleterious effects of these ligands mean that selective modulators with improved clinical profiles are needed. We obtained a crystal structure of PPAR gamma ligand binding domain (LBD) and found that the ligand binding pocket (LBP) is occupied by bacterial medium chain fatty acids (MCFAs). We verified that MCFAs (C8-C10) bind the PPAR gamma LBD in vitro and showed that they are low-potency partial agonists that display assay-specific actions relative to TZDs; they act as very weak partial agonists in transfections with PPAR gamma LBD, stronger partial agonists with full length PPAR gamma and exhibit full blockade of PPAR gamma phosphorylation by cyclin-dependent kinase 5 (cdk5), linked to reversal of adipose tissue insulin resistance. MCFAs that bind PPAR gamma also antagonize TZD-dependent adipogenesis in vitro. X-ray structure B-factor analysis and molecular dynamics (MD) simulations suggest that MCFAs weakly stabilize C-terminal activation helix (H) 12 relative to TZDs and this effect is highly dependent on chain length. By contrast, MCFAs preferentially stabilize the H2-H3/beta-sheet region and the helix (H) 11-H12 loop relative to TZDs and we propose that MCFA assay-specific actions are linked to their unique binding mode and suggest that it may be possible to identify selective PPAR gamma modulators with useful clinical profiles among natural products.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Obese fat pads are frequently undervascularized and hypoxic, leading to increased fibrosis, inflammation, and ultimately insulin resistance. We hypothesized that VEGF-A-induced stimulation of angiogenesis enables sustained and sufficient oxygen and nutrient exchange during fat mass expansion, thereby improving adipose tissue function. Using a doxycycline (Dox)-inducible adipocyte-specific VEGF-A overexpression model, we demonstrate that the local up-regulation of VEGF-A in adipocytes improves vascularization and causes a "browning" of white adipose tissue (AT), with massive up-regulation of UCP1 and PGC1 alpha. This is associated with an increase in energy expenditure and resistance to high fat diet-mediated metabolic insults. Similarly, inhibition of VEGF-A-induced activation of VEGFR2 during the early phase of high fat diet-induced weight gain, causes aggravated systemic insulin resistance. However, the same VEGF-A-VEGFR2 blockade in ob/ob mice leads to a reduced body-weight gain, an improvement in insulin sensitivity, a decrease in inflammatory factors, and increased incidence of adipocyte death. The consequences of modulation of angiogenic activity are therefore context dependent. Proangiogenic activity during adipose tissue expansion is beneficial, associated with potent protective effects on metabolism, whereas antiangiogenic action in the context of preexisting adipose tissue dysfunction leads to improvements in metabolism, an effect likely mediated by the ablation of dysfunctional proinflammatory adipocytes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Second generation antipsychotics (SGAs) have been linked to metabolic and bone disorders in clinical studies, but the mechanisms of these side effects remain unclear. Additionally, no studies have examined whether SGAs cause bone loss in mice. Using in vivo and in vitro modeling we examined the effects of risperidone, the most commonly prescribed SGA, on bone in C57BL6/J (B6) mice. Mice were treated with risperidone orally by food supplementation at a dose of 1.25 mg/kg daily for 5 and 8 weeks, starting at 3.5 weeks of age. Risperidone reduced trabecular BV/TV, trabecular number and percent cortical area. Trabecular histomorphometry demonstrated increased resorption parameters, with no change in osteoblast number or function. Risperidone also altered adipose tissue distribution such that white adipose tissue mass was reduced and liver had significantly higher lipid infiltration. Next, in order to tightly control risperidone exposure, we administered risperidone by chronic subcutaneous infusion with osmotic minipumps (0.5 mg/kg daily for 4 weeks) in 7 week old female B6 mice. Similar trabecular and cortical bone differences were observed compared to the orally treated groups (reduced trabecular BV/TV, and connectivity density, and reduced percent cortical area) with no change in body mass, percent body fat, glucose tolerance or insulin sensitivity. Unlike in orally treated mice, risperidone infusion reduced bone formation parameters (serum P1NP, MAR and BFR/BV). Resorption parameters were elevated, but this increase did not reach statistical significance. To determine if risperidone could directly affect bone cells, primary bone marrow cells were cultured with osteoclast or osteoblast differentiation media. Risperidone was added to culture medium in clinically relevant doses of 0, 2.5 or 25 ng/ml. The number of osteoclasts was significantly increased by addition in vitro of risperidone while osteoblast differentiation was not altered. These studies indicate that risperidone treatment can have negative skeletal consequences by direct activation of osteoclast activity and by indirect non-cell autonomous mechanisms. Our findings further support the tenet that the negative side effects of SGAs on bone mass should be considered when weighing potential risks and benefits, especially in children and adolescents who have not yet reached peak bone mass. This article is part of a Special Issue entitled: Interactions Between Bone, Adipose Tissue and Metabolism. (C) 2011 Elsevier Inc. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Evidences have suggested that the endocannabinoid system is overactive in obesity, resulting in enhanced endocannabinoid levels in both circulation and visceral adipose tissue. The blockade of cannabinoid receptor type 1 (CB1) has been proposed for the treatment of obesity. Besides loss of body weight, CB1 antagonism improves insulin sensitivity, in which the glucose transporter type 4 (GLUT4) plays a key role. The aim of this study was to investigate the modulation of GLUT4-encoded gene (Slc2a4 gene) expression by CB1 receptor. For this, 3T3-L1 adipocytes were incubated in the presence of a highly selective CB1 receptor agonist (1 mu M arachidonyl-2'-chloroethylamide) and/or a CB1 receptor antagonist/inverse agonist (0.1, 0.5, or 1 mu M AM251, 1-(2,4-dichlorophenyl)-5-(4-iodophenyl)-4-methyl-N-1-piperidinyl-1H-pyrazole-3-carboxamide). After acute (2 and 4 h) and chronic (24 h) treatments, cells were harvested to evaluate: i) Slc2a4, Cnr1 (CB1 receptor-encoded gene), and Srebf1 type a (SREBP-1a type-encoded gene) mRNAs (real-time PCR); ii) GLUT4 protein (western blotting); and iii) binding activity of nuclear factor (NF)-kappa B and sterol regulatory element-binding protein (SREBP)-1 specifically in the promoter of Slc2a4 gene (electrophoretic mobility shift assay). Results revealed that both acute and chronic CB1 receptor antagonism greatly increased (similar to 2.5-fold) Slc2a4 mRNA and protein content. Additionally, CB1-induced upregulation of Slc2a4 was accompanied by decreased binding activity of NF-kappa B at 2 and 24 h, and by increased binding activity of the SREBP-1 at 24 h. In conclusion, these findings reveal that the blockade of CB1 receptor markedly increases Slc2a4/GLUT4 expression in adipocytes, a feature that involves NF-kappa B and SREBP-1 transcriptional regulation. Journal of Molecular Endocrinology (2012) 49, 97-106

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Context: Liposuction is suggested to result in long-term body fat regain that could lead to increased cardiometabolic risk. We hypothesized that physical activity could prevent this effect. Objective: Our objective was to investigate the effects of liposuction on body fat distribution and cardiometabolic risk factors in women who were either exercise trained or not after surgery. Design, Setting, and Participants: Thirty-six healthy normal-weight women participated in this 6-month randomized controlled trial at the University of Sao Paulo, Sao Paulo, Brazil. Interventions: Patients underwent a small-volume abdominal liposuction. Two months after surgery, the subjects were randomly allocated into two groups: trained (TR, n = 18, 4-month exercise program) and nontrained (NT, n = 18). Main Outcome Measures: Body fat distribution (assessed by computed tomography) was assessed before the intervention (PRE) and 2 months (POST2), and 6 months (POST6) after surgery. Secondary outcome measures included body composition, metabolic parameters and dietary intake, assessed at PRE, POST2, and POST6, and total energy expenditure, physical capacity, and sc adipocyte size and lipid metabolism-related gene expression, assessed at PRE and POST6. Results: Liposuction was effective in reducing sc abdominal fat (PRE vs. POST2, P = 0.0001). Despite the sustained sc abdominal fat decrement at POST6 (P = 0.0001), the NT group showed a significant 10% increase in visceral fat from PRE to POST6 (P = 0.04; effect size = -0.72) and decreased energy expenditure (P = 0.01; effect size = 0.95) when compared with TR. Dietary intake, adipocyte size, and gene expression were unchanged over time. Conclusion: Abdominal liposuction does not induce regrowth of fat, but it does trigger a compensatory increase of visceral fat, which is effectively counteracted by physical activity. (J Clin Endocrinol Metab 97: 2388-2395, 2012)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Objective To evaluate whether the presence of polycystic ovary syndrome (PCOS) alters multiple ultrasonographic and laboratory markers of metabolic and cardiovascular disease risk in obese women without any other health condition that could interfere with combined oral contraceptive (COC) eligibility criteria. Methods This was a case- control study evaluating 90 obese women ( body mass index ( BMI) = 30.0 kg/m2 and < 40 kg/m2) aged between 18 and 40 years without any other health condition that could interfere with COC eligibility criteria, of whom 45 had PCOS and 45 were age- matched controls. BMI, waist and hip circumference, arterial blood pressure, fasting insulin and glucose, quantitative insulin sensitivity check index ( QUICKI), highdensity lipoprotein cholesterol, low- density lipoprotein cholesterol, total cholesterol, triglycerides, testosterone, sex hormone- binding globulin, free androgen index ( FAI), carotid stiffness index, intima media thickness, flowmediated dilatation ( FMD) of the brachial artery and non- alcoholic fatty liver disease ( NAFLD) were assessed. Results In women with PCOS, we observed a higher frequency of NAFLD ( 73.3 vs. 46.7%, P < 0.01) and higher FAI ( 10.4 vs. 6.8%, P < 0.01). We also observed a trend towards increased insulin levels ( 10.06 +/- 6.66 vs. 7.45 +/- 5.88 mu IU/mL, P = 0.05), decreased QUICKI ( 0.36 +/- 0.06 vs. 0.39 +/- 0.07, P = 0.05) and decreased FMD ( 7.00 +/- 3.87 vs. 8.41 +/- 3.79%, P = 0.08). No other significant difference was observed. Conclusions NAFLD is frequent in obese women without any other health condition that could interfere with COC eligibility criteria, especially in those with PCOS. This should be considered when choosing the best contraceptive option. Copyright (C) 2012 ISUOG. Published by John Wiley & Sons, Ltd.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Adiponectin and interleukin 10 (IL-10) are adipokines that are predominantly secreted by differentiated adipocytes and are involved in energy homeostasis, insulin sensitivity, and the anti-inflammatory response. These two adipokines are reduced in obese subjects, which favors increased activation of nuclear factor kappa B (NF-kappa B) and leads to elevation of pro-inflammatory adipokines. However, the effects of adiponectin and IL-10 on NF-kappa B DNA binding activity (NF-kappa Bp50 and NF-kappa Bp65) and proteins involved with the toll-like receptor (TLR-2 and TLR-4) pathway, such as MYD88 and TRAF6 expression, in lipopolysaccharide-treated 3T3-L1 adipocytes are unknown. Stimulation of lipopolysaccharide-treated 3T3-L1 adipocytes for 24 h elevated IL-6 levels; activated the NF-kappa B pathway cascade; increased protein expression of IL-6R, TLR-4, MYD88, and TRAF6; and increased the nuclear activity of NF-kappa B (p50 and p65) DNA binding. Adiponectin and IL-10 inhibited the elevation of IL-6 levels and activated NF-kappa B (p50 and p65) DNA binding. Taken together, the present results provide evidence that adiponectin and IL-10 have an important role in the anti-inflammatory response in adipocytes. In addition, inhibition of NF-kappa B signaling pathways may be an excellent strategy for the treatment of inflammation in obese individuals. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background: Cytokines secreted by the adipose tissue influence inflammation and insulin sensitivity, and lead to metabolic disturbances. How certain single-nucleotide polymorphisms (SNPs) interfere on lifestyle interventions is unclear. We assessed associations of selected SNPs with changes induced by a lifestyle intervention. Methods: This 9-month intervention on diet and physical activity included 180 Brazilians at high cardiometabolic risk, genotyped for the TNF-alpha -308 G/A, IL-6 -174 G/C and AdipoQ 45 T/G SNPs. Changes in metabolic and inflammatory variables were analyzed according to these SNPs. Individuals with at least one variant allele were grouped and compared with those with the reference genotype. Results: In the entire sample (66.7% women; mean age 56.5 +/- 11.6 years), intervention resulted in lower energy intake, higher physical activity, and improvement in anthropometry, plasma glucose, HOMA-IR, lipid profile and inflammatory markers, except for IL-6 concentrations. After intervention, only variant allele carriers of the TNF-alpha -308 G/A decreased plasma glucose, after adjusting for age and gender (OR 2.96, p = 0.025). Regarding the IL-6 -174 G/C SNP, carriers of the variant allele had a better response of lipid profile and adiponectin concentration, but only the reference genotype group decreased plasma glucose. In contrast to individuals with the reference genotype, carriers of variant allele of AdipoQ 45 T/G SNP did not change plasma glucose, apolipoprotein B, HDL-c and adiponectin concentrations in response to intervention. Conclusion: The TNF alpha -308 G/A SNP may predispose a better response of glucose metabolism to lifestyle intervention. The IL-6 -174 G/C SNP may confer a beneficial effect on lipid but not on glucose metabolism. Our findings reinforce unfavorable effects of the AdipoQ 45 T/G SNP in lipid profile and glucose metabolism after intervention in Brazilians at cardiometabolic risk. Further studies are needed to direct lifestyle intervention to subsets of individuals at cardiometabolic risk.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Abstract Background The beneficial actions of exercise training on lipid, glucose and energy metabolism and insulin sensitivity appear to be in part mediated by PGC-1α. Previous studies have shown that spontaneously exercised rats show at rest enhanced responsiveness to exogenous insulin, lower plasma insulin levels and increased skeletal muscle insulin sensitivity. This study was initiated to examine the functional interaction between exercise-induced modulation of skeletal muscle and liver PGC-1α protein expression, whole body insulin sensitivity, and circulating FFA levels as a measure of whole body fatty acid (lipid) metabolism. Methods Two groups of male Wistar rats (2 Mo of age, 188.82 ± 2.77 g BW) were used in this study. One group consisted of control rats placed in standard laboratory cages. Exercising rats were housed individually in cages equipped with running wheels and allowed to run at their own pace for 5 weeks. At the end of exercise training, insulin sensitivity was evaluated by comparing steady-state plasma glucose (SSPG) concentrations at constant plasma insulin levels attained during the continuous infusion of glucose and insulin to each experimental group. Subsequently, soleus and plantaris muscle and liver samples were collected and quantified for PGC-1α protein expression by Western blotting. Collected blood samples were analyzed for glucose, insulin and FFA concentrations. Results Rats housed in the exercise wheel cages demonstrated almost linear increases in running activity with advancing time reaching to maximum value around 4 weeks. On an average, the rats ran a mean (Mean ± SE) of 4.102 ± 0.747 km/day and consumed significantly more food as compared to sedentary controls (P < 0.001) in order to meet their increased caloric requirement. Mean plasma insulin (P < 0.001) and FFA (P < 0.006) concentrations were lower in the exercise-trained rats as compared to sedentary controls. Mean steady state plasma insulin (SSPI) and glucose (SSPG) concentrations were not significantly different in sedentary control rats as compared to exercise-trained animals. Plantaris PGC-1α protein expression increased significantly from a 1.11 ± 0.12 in the sedentary rats to 1.74 ± 0.09 in exercising rats (P < 0.001). However, exercise had no effect on PGC-1α protein content in either soleus muscle or liver tissue. These results indicate that exercise training selectively up regulates the PGC-1α protein expression in high-oxidative fast skeletal muscle type such as plantaris muscle. Conclusion These data suggest that PGC-1α most likely plays a restricted role in exercise-mediated improvements in insulin resistance (sensitivity) and lowering of circulating FFA levels.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Abstract Background Cytokines secreted by the adipose tissue influence inflammation and insulin sensitivity, and lead to metabolic disturbances. How certain single-nucleotide polymorphisms (SNPs) interfere on lifestyle interventions is unclear. We assessed associations of selected SNPs with changes induced by a lifestyle intervention. Methods This 9-month intervention on diet and physical activity included 180 Brazilians at high cardiometabolic risk, genotyped for the TNF-α -308 G/A, IL-6 -174 G/C and AdipoQ 45 T/G SNPs. Changes in metabolic and inflammatory variables were analyzed according to these SNPs. Individuals with at least one variant allele were grouped and compared with those with the reference genotype. Results In the entire sample (66.7% women; mean age 56.5 ± 11.6 years), intervention resulted in lower energy intake, higher physical activity, and improvement in anthropometry, plasma glucose, HOMA-IR, lipid profile and inflammatory markers, except for IL-6 concentrations. After intervention, only variant allele carriers of the TNF-α -308 G/A decreased plasma glucose, after adjusting for age and gender (OR 2.96, p = 0.025). Regarding the IL6 -174 G/C SNP, carriers of the variant allele had a better response of lipid profile and adiponectin concentration, but only the reference genotype group decreased plasma glucose. In contrast to individuals with the reference genotype, carriers of variant allele of AdipoQ 45 T/G SNP did not change plasma glucose, apolipoprotein B, HDL-c and adiponectin concentrations in response to intervention. Conclusion The TNFα -308 G/A SNP may predispose a better response of glucose metabolism to lifestyle intervention. The IL-6 -174 G/C SNP may confer a beneficial effect on lipid but not on glucose metabolism. Our findings reinforce unfavorable effects of the AdipoQ 45 T/G SNP in lipid profile and glucose metabolism after intervention in Brazilians at cardiometabolic risk. Further studies are needed to direct lifestyle intervention to subsets of individuals at cardiometabolic risk.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

OBJETIVO: investigar se a abreviação do jejum pré-operatório com uma bebida contendo glutamina e dextrinomaltose melhora a resposta orgânica ao trauma cirúrgico. MÉTODOS: trinta e seis pacientes adultas, (18-62 anos) candidatas à colecistectomia videolaparoscópica eletiva foram aleatoriamente divididas em três grupos: grupo jejum convencional (grupo Jejum), ou em dois grupos para receber duas dietas diferentes, oito horas (400ml) e duas horas antes da indução anestésica (200ml): grupo carboidrato (12,5% de dextrinomaltose) e glutamina (12,5% de dextrinomaltose e, respectivamente, 40 e 10g de glutamina). As amostras de sangue foram coletadas no período pré e pós-operatório. RESULTADOS: vinte e oito pacientes completaram o estudo. Nenhuma complicação pulmonar ocorreu durante o estudo. O volume residual gástrico foi similar entre os grupos (p=0,95). No pós-operatório, todas as pacientes do grupo jejum apresentaram glicemia anormal (>110mg/dl), sendo essa anormalidade 50% para o grupo CHO (p=0,14) e, apenas, 22,2% para o grupo GLN (p=0,01). No pós-operatório, todas as pacientes que abreviaram o jejum (grupo CHO + GLN) apresentaram insulinemia normal, contrastando com 66,7% no grupo jejum (p=0,02). A sensibilidade anormal à insulina subiu no pós-operatório de 32,1% para 46,4% dos casos (p=0,24). A sensibilidade anormal à insulina, no pós-operatório, ocorreu em apenas 11,1% das pacientes do grupo GLN comparado com 55,5% do grupo jejum (p=0,02). CONCLUSÃO: a abreviação do jejum pré-operatório para duas horas com glutamina e dextrinomaltose melhora a sensibilidade à insulina de pacientes submetidas à colecistectomia videolaparoscópica eletiva.