975 resultados para Insufficiency respiratory syndrome
Resumo:
Context: Very few authors have investigated the relationship between hip-abductor muscle strength and frontal-plane knee mechanics during running. Objective: To investigate this relationship using a 3-week hip-abductor muscle-strengthening program to identify changes in strength, pain, and biomechanics in runners with patellofemoral pain syndrome (PFPS). Design: Cohort study. Setting: University-based clinical research laboratory. Patients or Other Participants: Fifteen individuals (5 men, 10 women) with PFPS and 10 individuals without PFPS (4 men, 6 women) participated. Intervention(s): The patients with PFPS completed a 3-week hip-abductor strengthening protocol; control participants did not. Main Outcome Measure(s): The dependent variables of interest were maximal isometric hip-abductor muscle strength, 2-dimensional peak knee genu valgum angle, and stride-to-stride knee-joint variability. All measures were recorded at baseline and 3 weeks later. Between-groups differences were compared using repeated-measures analyses of variance. Results: At baseline, the PFPS group exhibited reduced strength, no difference in peak genu valgum angle, and increased stride-to-stride knee-joint variability compared with the control group. After the 3-week protocol, the PFPS group demonstrated increased strength, less pain, no change in peak genu valgum angle, and reduced stride-to-stride knee-joint variability compared with baseline. Conclusions: A 3-week hip-abductor muscle-strengthening protocol was effective in increasing muscle strength and decreasing pain and stride-to-stride knee-joint variability in individuals with PFPS. However, concomitant changes in peak knee genu valgum angle were not observed.
Resumo:
Background Surveillance programs and research for acute respiratory infections in remote Australian communities are complicated by difficulties in the storage and transport of frozen samples to urban laboratories for testing. This study assessed the sensitivity of a simple method for transporting nasal swabs from a remote setting for bacterial polymerase chain reaction (PCR) testing. Methods We sampled every individual who presented to a remote community clinic over a three week period in August at a time of low influenza and no respiratory syncytial virus activity. Two anterior nasal swabs were collected from each participant. The left nare specimen was mailed to the laboratory via routine postal services. The right nare specimen was transported frozen. Testing for six bacterial species was undertaken using real-time PCR. Results One hundred and forty participants were enrolled who contributed 150 study visits and paired specimens for testing. Respiratory illnesses accounted for 10% of the reasons for presentation. Bacteria were identified in 117 (78%) presentations for 110 (79.4%) individuals; Streptococcus pneumoniae and Haemophilus influenzae were the most common (each identified in 58% of episodes). The overall sensitivity for any bacterium detected in mailed specimens was 82.2% (95% CI 73.6, 88.1) compared to 94.8% (95% CI 89.4, 98.1) for frozen specimens. The sensitivity of the two methods varied by species identified. Conclusion The mailing of unfrozen nasal specimens from remote communities appears to influence the utility of the specimen for bacterial studies, with a loss in sensitivity for the detection of any species overall. Further studies are needed to confirm our finding and to investigate the possible mechanisms of effect. Clinical trial registration Australia and New Zealand Clinical Trials Registry Number: ACTRN12609001006235. Keywords: Respiratory bacteria; RT-PCR; Specimen transport; Laboratory methods
Resumo:
The exchange between the body and architecture walks a fine line between violence and pleasure. It is through the body that the subject engages with the architectural act, not via thought or reason, but through action. The materiality of architecture is the often the catalyst for some intense association; the wall that defines gender or class, the double bolted door that incarcerates, the enclosed privacy of the bedroom to the love affair. Architecture is the physical manifestation of Lefebvre’s inscribed space. It enacts the social and political systems through bodily occupation. Architecture, when tested by the occupation of bodies, anchors ideology in both space and time. The architect’s script can be powerful when rehearsed honestly to the building’s intentions and just as beautiful when rebuked by the act of protest or unfaithful occupation. This research examines this fine line of violence and pleasure in architecture through performance, in the work of Bryony Lavin’s play Stockholm and Revolving Door by Allora & Calzadilla as part of the recent Kaldor Public Art Projects exhibition 13 Rooms in Sydney. The research is underpinned by the work of Architect and theorist, Bernard Tschumi in his two essays, Violence of Architecture and The Pleasure of Architecture. Studying architecture through the lens of performance shifts the focus of examination from pure thought to the body; because architecture is occupied through the body and not the mind.
Resumo:
Bicycle commuting has the potential to be an effective contributing solution to address some of modern society’s biggest issues, including cardiovascular disease, anthropogenic climate change and urban traffic congestion. However, individuals shifting from a passive to an active commute mode may be increasing their potential for air pollution exposure and the associated health risk. This project, consisting of three studies, was designed to investigate the health effects of bicycle commuters in relation to air pollution exposure, in a major city in Australia (Brisbane). The aims of the three studies were to: 1) examine the relationship of in-commute air pollution exposure perception, symptoms and risk management; 2) assess the efficacy of commute re-routing as a risk management strategy by determining the exposure potential profile of ultrafine particles along commute route alternatives of low and high proximity to motorised traffic; and, 3) evaluate the feasibility of implementing commute re-routing as a risk management strategy by monitoring ultrafine particle exposure and consequential physiological response from using commute route alternatives based on real-world circumstances; 3) investigate the potential of reducing exposure to ultrafine particles (UFP; < 0.1 µm) during bicycle commuting by lowering proximity to motorised traffic with real-time air pollution and acute inflammatory measurements in healthy individuals using their typical, and an alternative to their typical, bicycle commute route. The methods of the three studies included: 1) a questionnaire-based investigation with regular bicycle commuters in Brisbane, Australia. Participants (n = 153; age = 41 ± 11 yr; 28% female) reported the characteristics of their typical bicycle commute, along with exposure perception and acute respiratory symptoms, and amenability for using a respirator or re-routing their commute as risk management strategies; 2) inhaled particle counts measured along popular pre-identified bicycle commute route alterations of low (LOW) and high (HIGH) motorised traffic to the same inner-city destination at peak commute traffic times. During commute, real-time particle number concentration (PNC; mostly in the UFP range) and particle diameter (PD), heart and respiratory rate, geographical location, and meteorological variables were measured. To determine inhaled particle counts, ventilation rate was calculated from heart-rate-ventilation associations, produced from periodic exercise testing; 3) thirty-five healthy adults (mean ± SD: age = 39 ± 11 yr; 29% female) completed two return trips of their typical route (HIGH) and a pre-determined altered route of lower proximity to motorised traffic (LOW; determined by the proportion of on-road cycle paths). Particle number concentration (PNC) and diameter (PD) were monitored in real-time in-commute. Acute inflammatory indices of respiratory symptom incidence, lung function and spontaneous sputum (for inflammatory cell analyses) were collected immediately pre-commute, and one and three hours post-commute. The main results of the three studies are that: 1) healthy individuals reported a higher incidence of specific acute respiratory symptoms in- and post- (compared to pre-) commute (p < 0.05). The incidence of specific acute respiratory symptoms was significantly higher for participants with respiratory disorder history compared to healthy participants (p < 0.05). The incidence of in-commute offensive odour detection, and the perception of in-commute air pollution exposure, was significantly lower for participants with smoking history compared to healthy participants (p < 0.05). Females reported significantly higher incidence of in-commute air pollution exposure perception and other specific acute respiratory symptoms, and were more amenable to commute re-routing, compared to males (p < 0.05). Healthy individuals have indicated a higher incidence of acute respiratory symptoms in- and post- (compared to pre-) bicycle commuting, with female gender and respiratory disorder history indicating a comparably-higher susceptibility; 2) total mean PNC of LOW (compared to HIGH) was reduced (1.56 x e4 ± 0.38 x e4 versus 3.06 x e4 ± 0.53 x e4 ppcc; p = 0.012). Total estimated ventilation rate did not vary significantly between LOW and HIGH (43 ± 5 versus 46 ± 9 L•min; p = 0.136); however, due to total mean PNC, accumulated inhaled particle counts were 48% lower in LOW, compared to HIGH (7.6 x e8 ± 1.5 x e8 versus 14.6 x e8 ± 1.8 x e8; p = 0.003); 3) LOW resulted in a significant reduction in mean PNC (1.91 x e4 ± 0.93 x e4 ppcc vs. 2.95 x e4 ± 1.50 x e4 ppcc; p ≤ 0.001). Commute distance and duration were not significantly different between LOW and HIGH (12.8 ± 7.1 vs. 12.0 ± 6.9 km and 44 ± 17 vs. 42 ± 17 mins, respectively). Besides incidence of in-commute offensive odour detection (42 vs. 56 %; p = 0.019), incidence of dust and soot observation (33 vs. 47 %; p = 0.038) and nasopharyngeal irritation (31 vs. 41 %; p = 0.007), acute inflammatory indices were not significantly associated to in-commute PNC, nor were these indices reduced with LOW compared to HIGH. The main conclusions of the three studies are that: 1) the perception of air pollution exposure levels and the amenability to adopt exposure risk management strategies where applicable will aid the general population in shifting from passive, motorised transport modes to bicycle commuting; 2) for bicycle commuting at peak morning commute times, inhaled particle counts and therefore cardiopulmonary health risk may be substantially reduced by decreasing exposure to motorised traffic, which should be considered by both bicycle commuters and urban planners; 3) exposure to PNC, and the incidence of offensive odour and nasopharyngeal irritation, can be significantly reduced when utilising a strategy of lowering proximity to motorised traffic whilst bicycle commuting, without significantly increasing commute distance or duration, which may bring important benefits for both healthy and susceptible individuals. In summary, the findings from this project suggests that bicycle commuters can significantly lower their exposure to ultrafine particle emissions by varying their commute route to reduce proximity to motorised traffic and associated combustion emissions without necessarily affecting their time of commute. While the health endpoints assessed with healthy individuals were not indicative of acute health detriment, individuals with pre-disposing physiological-susceptibility may benefit considerably from this risk management strategy – a necessary research focus with the contemporary increased popularity of both promotion and participation in bicycle commuting.
Resumo:
Air pollution is a widespread health problem associated with respiratory symptoms. Continuous exposure monitoring was performed to estimate alveolar and tracheobronchial dose, measured as deposited surface area, for 103 children and to evaluate the long-term effects of exposure to airborne particles through spirometry, skin prick tests and measurement of exhaled nitric oxide (eNO). The mean daily alveolar deposited surface area dose received by children was 1.35×103 mm2. The lowest and highest particle number concentrations were found during sleeping and eating time. A significant negative association was found between changes in pulmonary function tests and individual dose estimates. Significant differences were found for asthmatics, children with allergic rhinitis and sensitive to allergens compared to healthy subjects for eNO. Variation is a child’s activity over time appeared to have a strong impact on respiratory outcomes, which indicates that personal monitoring is vital for assessing the expected health effects of exposure to particles.
Resumo:
Background: Side effects of the medications used for procedural sedation and analgesia in the cardiac catheterisation laboratory are known to cause impaired respiratory function. Impaired respiratory function poses considerable risk to patient safety as it can lead to inadequate oxygenation. Having knowledge about the conditions that predict impaired respiratory function prior to the procedure would enable nurses to identify at-risk patients and selectively implement intensive respiratory monitoring. This would reduce the possibility of inadequate oxygenation occurring. Aim: To identify pre-procedure risk factors for impaired respiratory function during nurse-administered procedural sedation and analgesia in the cardiac catheterisation laboratory. Design: Retrospective matched case–control. Methods: 21 cases of impaired respiratory function were identified and matched to 113 controls from a consecutive cohort of patients over 18 years of age. Conditional logistic regression was used to identify risk factors for impaired respiratory function. Results: With each additional indicator of acute illness, case patients were nearly two times more likely than their controls to experience impaired respiratory function (OR 1.78; 95% CI 1.19–2.67; p = 0.005). Indicators of acute illness included emergency admission, being transferred from a critical care unit for the procedure or requiring respiratory or haemodynamic support in the lead up to the procedure. Conclusion: Several factors that predict the likelihood of impaired respiratory function were identified. The results from this study could be used to inform prospective studies investigating the effectiveness of interventions for impaired respiratory function during nurse-administered procedural sedation and analgesia in the cardiac catheterisation laboratory.
Resumo:
Background: Procedural sedation and analgesia (PSA) administered by nurses in the cardiac catheterisation laboratory (CCL) is unlikely to yield serious complications. However, the safety of this practice is dependent on timely identification and treatment of depressed respiratory function. Aim: Describe respiratory monitoring in the CCL. Methods: Retrospective medical record audit of adult patients who underwent a procedure in the CCLs of one private hospital in Brisbane during May and June 2010. An electronic database was used to identify subjects and an audit tool ensured data collection was standardised. Results: Nurses administered PSA during 172/473 (37%) procedures including coronary angiographies, percutaneous coronary interventions, electrophysiology studies, radiofrequency ablations, cardiac pacemakers, implantable cardioverter defibrillators, temporary pacing leads and peripheral vascular interventions. Oxygen saturations were recorded during 160/172 (23%) procedures, respiration rate was recorded during 17/172 (10%) procedures, use of oxygen supplementation was recorded during 40/172 (23%) procedures and 13/172 (7.5%; 95% CI=3.59–11.41%) patients experienced oxygen desaturation. Conclusion: Although oxygen saturation was routinely documented, nurses did not regularly record respiration observations. It is likely that surgical draping and the requirement to minimise radiation exposure interfered with nurses’ ability to observe respiration. Capnography could overcome these barriers to respiration assessment as its accurate measurement of exhaled carbon dioxide coupled with the easily interpretable waveform output it produces, which displays a breath-by-breath account of ventilation, enables identification of respiratory depression in real-time. Results of this audit emphasise the need to ascertain the clinical benefits associated with using capnography to assess ventilation during PSA in the CCL.
Resumo:
Impaired respiratory function (IRF) during procedural sedation and analgesia (PSA) poses considerable risk to patient safety as it can lead to inadequate oxygenation and ventilation. Risk factors that can be screened prior to the procedure have not been identified for the cardiac catheterization laboratory (CCL).
Resumo:
Reduced SHOX gene expression has been demonstrated to be associated with all skeletal abnormalities in Turner syndrome, other than scoliosis (and kyphosis). There is evidence to suggest that Turner syndrome scoliosis is clinically and radiologically similar to idiopathic scoliosis, although the phenotypes are dissimilar. This pilot gene expression study used relative quantitative real-time PCR (qRT-PCR) of the SHOX (short stature on X) gene to determine whether it is expressed in vertebral body growth plates in idiopathic and congenital scoliosis. After vertebral growth plate dissection, tissue was examined histologically and RNA was extracted and its integrity was assessed using a Bio-Spec Mini, NanoDrop ND-1000 spectrophotometer and standard denaturing gel electrophoresis. Following cDNA synthesis, gene-specific optimization in a Corbett RotorGene 6000 real-time cycler was followed by qRT-PCR of vertebral tissue. Histological examination of vertebral samples confirmed that only growth plate was analyzed for gene expression. Cycling and melt curves were resolved in triplicate for all samples. SHOX abundance was demonstrated in congenital and idiopathic scoliosis vertebral body growth plates. SHOX expression was 11-fold greater in idiopathic compared to congenital (n = 3) scoliosis (p = 0.027). This study confirmed that SHOX was expressed in vertebral body growth plates, which implies that its expression may also be associated with the scoliosis (and kyphosis) of Turner syndrome. SHOX expression is reduced in Turner syndrome (short stature). In this study, increased SHOX expression was demonstrated in idiopathic scoliosis (tall stature) and congenital scoliosis.
Resumo:
Chlamydia pneumoniae commonly causes respiratory tract infections in children, and epidemiological investigations strongly link infection to the pathogenesis of asthma. The immune system in early life is immature and may not respond appropriately to pathogens. Toll-like receptor (TLR)2 and 4 are regarded as the primary pattern recognition receptors that sense bacteria, however their contribution to innate and adaptive immunity in early life remains poorly defined. We investigated the role of TLR2 and 4 in the induction of immune responses to Chlamydia muridarum respiratory infection, in neonatal wild-type (Wt) or TLR2-deficient (−/−), 4−/− or 2/4−/− BALB/c mice. Wt mice had moderate disease and infection. TLR2−/− mice had more severe disease and more intense and prolonged infection compared to other groups. TLR4−/− mice were asymptomatic. TLR2/4−/− mice had severe early disease and persistent infection, which resolved thereafter consistent with the absence of symptoms in TLR4−/− mice. Wt mice mounted robust innate and adaptive responses with an influx of natural killer (NK) cells, neutrophils, myeloid (mDCs) and plasmacytoid (pDCs) dendritic cells, and activated CD4+ and CD8+ T-cells into the lungs. Wt mice also had effective production of interferon (IFN)γ in the lymph nodes and lung, and proliferation of lymph node T-cells. TLR2−/− mice had more intense and persistent innate (particularly neutrophil) and adaptive cell responses and IL-17 expression in the lung, however IFNγ responses and T-cell proliferation were reduced. TLR2/4−/− mice had reduced innate and adaptive responses. Most importantly, neutrophil phagocytosis was impaired in the absence of TLR2. Thus, TLR2 expression, particularly on neutrophils, is required for effective control of Chlamydia respiratory infection in early life. Loss of control of infection leads to enhanced but ineffective TLR4-mediated inflammatory responses that prolong disease symptoms. This indicates that TLR2 agonists may be beneficial in the treatment of early life Chlamydia infections and associated diseases.
Resumo:
Deleterious responses to pathogens during infancy may contribute to infection and associated asthma. Chlamydia respiratory infections in early life are common causes of pneumonia and lead to reduced lung function and asthma. We investigated the role of interleukin-13 (IL-13) in promoting early-life Chlamydia respiratory infection, infection-induced airway hyperresponsiveness (AHR), and severe allergic airway disease (AAD). Infected infant Il13−/− mice had reduced infection, inflammation, and mucus-secreting cell hyperplasia. Surprisingly, infection of wild-type (WT) mice did not increase IL-13 production but reduced IL-13Rα2 decoy receptor levels compared with sham-inoculated controls. Infection of WT but not Il13−/− mice induced persistent AHR. Infection and associated pathology were restored in infected Il13−/− mice by reconstitution with IL-13. Stat6−/− mice were also largely protected. Neutralization of IL-13 during infection prevented subsequent infection-induced severe AAD. Thus, early-life Chlamydia respiratory infection reduces IL-13Rα2 production, which may enhance the effects of constitutive IL-13 and promote more severe infection, persistent AHR, and AAD.
Resumo:
Motivation is central to children’s learning. Without persistent effort, especially in the face of failure, and an eagerness to engage in challenging tasks, individuals are unlikely to learn as effectively as they might. Because of their cognitive impairments, children with Down syndrome will almost certainly have difficulties with learning. These difficulties will be ameliorated somewhat by strong engagement with learning activities whereas problems with motivation are likely to further jeopardise their academic progress as well as potentially limiting achievements in other areas of life. In this chapter we begin with a general overview of motivation. Using the framework of mastery motivation, we review the relatively small amount of research about children with Down syndrome. We identify the individual characteristics and features of children’s environments that are likely to be related to lower or higher levels of mastery motivation. In the final section, we consider implications for educators and then draw together the findings to provide a set of recommendations for future research.
Resumo:
Background Bronchiectasis unrelated to cystic fibrosis (CF) is being increasingly recognized in children and adults globally, both in resource-poor and in affluent countries. However, high-quality evidence to inform management is scarce. Oral amoxycillin-clavulanate is often the first antibiotic chosen for non-severe respiratory exacerbations, because of the antibiotic-susceptibility patterns detected in the respiratory pathogens commonly associated with bronchiectasis. Azithromycin has a prolonged half-life, and with its unique anti-bacterial, immunomodulatory, and anti-inflammatory properties, presents an attractive alternative. Our proposed study will test the hypothesis that oral azithromycin is non-inferior (within a 20% margin) to amoxycillin-clavulanate at achieving resolution of non-severe respiratory exacerbations by day 21 of treatment in children with non-CF bronchiectasis. Methods This will be a multicenter, randomized, double-blind, double-dummy, placebo-controlled, parallel group trial involving six Australian and New Zealand centers. In total, 170 eligible children will be stratified by site and bronchiectasis etiology, and randomized (allocation concealed) to receive: 1) azithromycin (5 mg/kg daily) with placebo amoxycillin-clavulanate or 2) amoxycillin-clavulanate (22.5 mg/kg twice daily) with placebo azithromycin for 21 days as treatment for non-severe respiratory exacerbations. Clinical data and a parent-proxy cough-specific quality of life (PC-QOL) score will be obtained at baseline, at the start and resolution of exacerbations, and on day 21. In most children, blood and deep-nasal swabs will also be collected at the same time points. The primary outcome is the proportion of children whose exacerbations have resolved at day 21. The main secondary outcome is the PC-QOL score. Other outcomes are: time to next exacerbation; requirement for hospitalization; duration of exacerbation, and spirometry data. Descriptive viral and bacteriological data from nasal samples and blood inflammatory markers will be reported where available. Discussion Currently, there are no published randomized controlled trials (RCT) to underpin effective, evidence-based management of acute respiratory exacerbations in children with non-CF bronchiectasis. To help address this information gap, we are conducting two RCTs. The first (bronchiectasis exacerbation study; BEST-1) evaluates the efficacy of azithromycin and amoxycillin-clavulanate compared with placebo, and the second RCT (BEST-2), described here, is designed to determine if azithromycin is non-inferior to amoxycillin-clavulanate in achieving symptom resolution by day 21 of treatment in children with acute respiratory exacerbations. Trial registration Australia and New Zealand Clinical Trials Register (ANZCTR) number ACTRN12612000010897. http://www.anzctr.org.au/trial_view.aspx?id=347879
Resumo:
Background Acute respiratory illness, a leading cause of cough in children, accounts for a substantial proportion of childhood morbidity and mortality worldwide. In some children acute cough progresses to chronic cough (> 4 weeks duration), impacting on morbidity and decreasing quality of life. Despite the importance of chronic cough as a cause of substantial childhood morbidity and associated economic, family and social costs, data on the prevalence, predictors, aetiology and natural history of the symptom are scarce. This study aims to comprehensively describe the epidemiology, aetiology and outcomes of cough during and after acute respiratory illness in children presenting to a tertiary paediatric emergency department. Methods/design A prospective cohort study of children aged <15 years attending the Royal Children's Hospital Emergency Department, Brisbane, for a respiratory illness that includes parent reported cough (wet or dry) as a symptom. The primary objective is to determine the prevalence and predictors of chronic cough (>= 4 weeks duration) post presentation with acute respiratory illness. Demographic, epidemiological, risk factor, microbiological and clinical data are completed at enrolment. Subjects complete daily cough dairies and weekly follow-up contacts for 28(+/-3) days to ascertain cough persistence. Children who continue to cough for 28 days post enrolment are referred to a paediatric respiratory physician for review. Primary analysis will be the proportion of children with persistent cough at day 28(+/-3). Multivariate analyses will be performed to evaluate variables independently associated with chronic cough at day 28(+/-3). Discussion Our protocol will be the first to comprehensively describe the natural history, epidemiology, aetiology and outcomes of cough during and after acute respiratory illness in children. The results will contribute to studies leading to the development of evidence-based clinical guidelines to improve the early detection and management of chronic cough in children during and after acute respiratory illness.