944 resultados para Insect bites and stings


Relevância:

50.00% 50.00%

Publicador:

Resumo:

Insect bite hypersensitivity (IBH) is an allergic dermatitis of horses caused by IgE-mediated reactions to bites of Culicoides and sometimes Simulium spp. The allergens causing IBH are probably salivary gland proteins from these insects, but they have not yet been identified. The aim of our study was to identify the number and molecular weight of salivary gland extract (SGE) proteins derived from Culicoides nubeculosus which are able to bind IgE antibodies (ab) from the sera of IBH-affected horses. Additionally, we sought to investigate the IgG subclass (IgGa, IgGb and IgGT) reactivity to these proteins. Individual IgE and IgG subclass responses to proteins of C. nubeculosus SGE were evaluated by immunoblot in 42 IBH-affected and 26 healthy horses belonging to different groups (Icelandic horses born in Iceland, Icelandic horses and horses from different breeds born in mainland Europe). Additionally, the specific antibody response was studied before exposure to bites of Culicoides spp. and over a period of 3 years in a cohort of 10 Icelandic horses born in Iceland and imported to Switzerland. Ten IgE-binding protein bands with approximate molecular weights of 75, 66, 52, 48, 47, 32, 22/21, 19, 15, 13/12 kDa were found in the SGE. Five of these bands bound IgE from 50% or more of the horse sera. Thirty-nine of the 42 IBH-affected horses but only 2 of the 26 healthy horses showed IgE-binding to the SGE (p<0.000001). Similarly, more IBH-affected than healthy horses had IgGa ab binding to the Culicoides SGE (19/22 and 9/22, respectively, p<0.01). Sera of IBH-affected horses contained IgE, IgGa and IgGT but not IgGb ab against significantly more protein bands than the sera of the healthy horses. The cohort of 10 Icelandic horses confirmed these results and showed that Culicoides SGE specific IgE correlates with onset of IBH. IBH-affected horses that were born in Iceland had IgGa and IgGT ab (p< or =0.01) as well as IgE ab (p=0.06) against a significantly higher number of SGE proteins than IBH-affected horses born in mainland Europe. The present study shows that Culicoides SGE contains at least 10 potential allergens for IBH and that IBH-affected horses show a large variety of IgE-binding patterns in immunoblots. These findings are important for the future development of a specific immunotherapy with recombinant salivary gland allergens.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Immunoglobulin E forms a minor component of serum antibody in mammals. In tissues IgE is bound by FcvarepsilonRI receptors on the surface of mast cells and mediates their release of inflammatory substances in response to antigen. IgE and mast cells have a central role in immunity to parasites and the pathogenesis of allergic diseases in horses and other mammals. This paper describes the production of several novel monoclonal antibodies that detect native equine IgE in immunohistology, ELISA and Western blotting. An antigen capture ELISA to quantify equine IgE in serum has been developed using two of these antibodies. The mean serum IgE concentration of a group of 122 adult horses was 23,523ng/ml with a range of 425-82,610ng/ml. Total serum IgE of healthy horses was compared with that of horses with insect bite dermal hypersensitivity (IBDH) an allergic reaction to the bites of blood feeding insects of Culicoides or Simulium spp. IBDH does not occur in Iceland where Culicoides spp. are absent, but following importation into mainland Europe native Icelandic horses have an exceptionally high incidence of this condition. In the present study Icelandic horses with IBDH had significantly higher total IgE than healthy Icelandic horse controls (P<0.05). By contrast in horses of other breeds the difference in total serum IgE between those affected with IBDH and healthy controls was not statistically significant. Total serum IgE was also monitored in a cohort of Icelandic horses prior to import into Switzerland and for a period of 3 years thereafter. High levels of serum IgE were present in all horses at the start of the study but dropped in the first year after import. Thereafter the total serum IgE remained low in Icelandic horses that remained healthy but rose significantly (P<0.05) in those that developed IBDH. These results support the conclusion that IBDH is a type I hypersensitivity response to insect allergens but indicate that IBDH in Icelandic horses may have a different pathogenesis from the same condition in other breeds.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Insect bite hypersensitivity (IBH) is an allergic dermatitis of horses caused by IgE-mediated reactions to bites of insects of the genus Culicoides. IBH does not occur in Iceland due to the absence of Culicoides. However, Icelandic horses exported to mainland Europe as adults (1st generation) have a >/=50% incidence of developing IBH. In contrast, their progeny (2nd generation) has a <10% incidence of IBH. Here we show that peripheral blood mononuclear cells (PBMC) from Icelandic horses born in mainland Europe and belonging either to the IBH or healthy subgroup produce less interleukin (IL)-4 after polyclonal or allergen-specific stimulation when compared with counterparts from horses born in Iceland. We examined a role of IL-10 and transforming growth factor (TGF)-beta1 in down-regulation of IL-4 in healthy 2nd generation Icelandic horses. Supernatants of PBMC from 2nd generation healthy horses down-regulated the proportion of IL-4-producing cells and IL-4 production in stimulated cultures of PBMC from 1st generation IBH. This inhibition was mimicked by a combination of IL-10 and TGF-beta1 but not by the single cytokines. Cultures of stimulated PBMC of healthy 2nd generation horses produced a low level of IL-4, but IL-4 production was increased by anti-equine IL-10 and anti-human TGF-beta1. This shows for the first time that in horses, IL-10 and TGF-beta1 combined regulate IL-4 production in vitro. It is suggested that in this naturally occurring IgE-mediated allergy, IL-10 and TGF-beta1 have a role in the down-regulation of IL-4-induced allergen-specific Th2 cells, thereby reducing the incidence of IBH.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Insect bite hypersensitivity (IBH) is an IgE-mediated allergic dermatitis of horses caused by bites of insects such as Culicoides or Simulium spp. The aim of the present study was to compare the IgE-binding pattern of sera of IBH-affected horses to Culicoides nubeculosus and Simulium vittatum salivary gland extracts (SGE). Individual IgE responses to proteins of S. vittatum and C. nubeculosus SGEs were evaluated in 15 IBH-affected and three healthy horses on immunoblots. Fourteen out of the 15 IBH-affected but none of the healthy horses showed individual IgE binding patterns to seven and six main protein bands in C. nubeculosus and S. vittatum SGE, respectively. These 14 sera showed IgE-binding to proteins from SGE of both C. nubeculosus and S. vittatum, but they reacted with fewer protein bands derived from S. vittatum than from C. nubeculosus SGE. Sera showing IgE-binding to a 32 kDa band from C. nubeculosus always bound to a 32 kDa band from S. vittatum. Similarly, all sera binding to a 70 kDa band from C. nubeculosus reacted with a corresponding band in S. vittatum SGE. The 70 kDa bands from S. vittatum and C. nubeculosus were identified by mass spectrometry as heat shock protein-70-cognate-3.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Insect bite hypersensitivity (IBH) is an allergic dermatitis of horses caused by bites of Culicoides and sometimes Simulium spp. The aim of this investigation was to identify Simulium allergens associated with IBH. A phage surface display cDNA library expressing recombinant Simulium vittatum salivary gland proteins was screened using sera of IBH-affected horses sensitized to S. vittatum salivary gland proteins as shown in immunoblot, resulting in the identification of seven cDNAs encoding IgE-binding proteins. The deduced amino acid sequences of these proteins showed sequence similarities to antigen 5 like protein (Sim v 1), to a serine protease inhibitor (Sim v 2), to two alpha-amylases (Sim v 3 and Sim v 4), and to three S. vittatum erythema proteins (SVEPs). The cDNA inserts were subcloned and expressed as [His](6)-tagged protein in Escherichia coli and purified using Ni(2+)-chelate affinity chromatography. Mice were immunised with the seven recombinant proteins and the antibodies tested against the recombinant proteins and salivary gland extract (SGE) of S. vittatum and Culicoides nubeculosus in immunoblot analyses. r-Sim v 1 specific mouse Abs recognized a band of about 32 kDa in immunoblots of both S. vittatum and C. nubeculosus SGE, detectable also by serum IgE of IBH-affected horses. Preincubation of horse serum with r-Sim v 1 completely inhibited IgE binding to the 32 kDa band demonstrating the presence of cross-reactive antigen 5 like proteins in both SGE. Determination of IgE levels against the r-Sim v proteins and crude S. vittatum extract by ELISA in sera from 25 IBH-affected and 20 control horses showed that IBH-affected horses had significantly higher IgE levels than controls against r-Sim v 1, 2, 3, 4 and S. vittatum extract, whereas the r-SVEP showed only marginal IgE binding. Further analyses showed that 60% of IBH-affected horses reacted to r-Sim v 1, suggesting that this could be a major allergen for IBH. Forty to twenty percent of the IBH-affected horses reacted with r-Sim v 2, 3 or 4. Combination of the results obtained with the 4 r-Sim v proteins showed that 92% of the IBH-affected but only 15% of the healthy horses had IgE levels against one or more of the 4 r-Sim v proteins. Seventy percent of the healthy horses had detectable IgE against S. vittatum extract, indicating a low specificity of the detection system used. Optimization of the ELISA system will be required to determine reliable cut-off values for the IBH-related allergens. Their in vivo relevance needs to be carefully assessed.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Insect bite hypersensitivity (IBH) is an allergic dermatitis of horses caused by bites of insects. IBH is a multifactorial disease with contribution of genetic and environmental factors. Candidate gene association analysis of IBH was performed in a group of 89 Icelandic horses all born in Iceland and imported to Europe. Horses were classified in IBH-affected and non-affected based on clinical signs and history of recurrent dermatitis, and on the results of an in vitro sulfidoleukotriene (sLT)-release assay with Culicoides nubeculosus and Simulium vittatum extract. Different genetic markers were tested for association with IBH by the Fisher's exact test. The effect of the major histocompatibility complex (MHC) gene region was studied by genotyping five microsatellites spanning the MHC region (COR112, COR113, COR114, UM011 and UMN-JH34-2), and exon 2 polymorphisms of the class II Eqca-DRA gene. Associations with Eqca-DRA and COR113 were identified (p < 0.05). In addition, a panel of 20 single nucleotide polymorphisms (SNPs) in 17 candidate allergy-related genes was tested. During the initial screen, no marker from the panel was significantly (p < 0.05) associated with IBH. Five SNPs associated with IBH at p < 0.10 were therefore used for analysis of combined genotypes. Out of them, SNPs located in the genes coding for the CD14 receptor (CD14), interleukin 23 receptor (IL23R), thymic stromal lymphopoietin (TSLP) and transforming growth factor beta 3 (TGFB3) molecules were associated with IBH as parts of complex genotypes. These results are supported by similar associations and by expression data from different horse populations and from human studies.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

This sheet tells how to prevent mosquito bites such as: Night or day, be prepared ; Use insect repellent ; Wear protective clothes ; Mosquito-proof your home.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The larvae of particular Ogmograptis spp. produce distinctive scribbles on some smooth-barked Eucalyptus spp. which are a common feature on many ornamental and forest trees in Australia. However, although they are conspicuous in the environment the systematics and biology of the genus has been poorly studied. This has been addressed through detailed field and laboratory studies of their biology of three species (O. racemosa Horak sp. nov., O. fraxinoides Horak sp. nov., O. scribula Meyrick), in conjunction with a comprehensive taxonomic revision support by a molecular phylogeny utilising the mitochondrial Cox1 and nuclear 18S genes. In brief, eggs are laid in bark depressions and the first instar larvae bore into the bark to the level where the future cork cambium forms (the phellegen). Early instar larvae bore wide, arcing tracks in this layer before forming a tighter zig-zag shaped pattern. The second last instar turns and bores either closely parallel to the initial mine or doubles its width, along the zig-zag shaped mine. The final instar possesses legs and a spinneret (unlike the earlier instars) and feeds exclusively on callus tissue which forms within the zig-zag shaped mine formed by the previous instar, before emerging from the bark to pupate at the base of the tree. The scars of mines them become visible scribble following the shedding of bark. Sequence data confirm the placement of Ogmograptis within the Bucculatricidae, suggest that the larvae responsible for the ‘ghost scribbles’ (unpigmented, raised scars found on smooth-barked eucalypts) are members of the genus Tritymba, and support the morphology-based species groups proposed for Ogmograptis. The formerly monotypic genus Ogmograptis Meyrick is revised and divided into three species groups. Eleven new species are described: Ogmograptis fraxinoides Horak sp. nov., Ogmograptis racemosa Horak sp. nov. and Ogmograptis pilularis Horak sp. nov. forming the scribula group with Ogmograptis scribula Meyrick; Ogmograptis maxdayi Horak sp. nov., Ogmograptis barloworum Horak sp. nov., Ogmograptis paucidentatus Horak sp. nov., Ogmograptis rodens Horak sp. nov., Ogmograptis bignathifer Horak sp. nov. and Ogmograptis inornatus Horak sp. nov. as the maxdayi group; Ogmograptis bipunctatus Horak sp. nov., Ogmograptis pulcher Horak sp. nov., Ogmograptis triradiata (Turner) comb. nov. and Ogmograptis centrospila (Turner) comb. nov. as the triradiata group. Ogmograptis notosema (Meyrick) cannot be assigned to a species group as the holotype has not been located. Three unique synapomorphies, all derived from immatures, redefine the family Bucculatricidae, uniting Ogmograptis, Tritymba Meyrick (both Australian) and Leucoedemia Scoble & Scholtz (African) with Bucculatrix Zeller, which is the sister group of the southern hemisphere genera. The systematic history of Ogmograptis and the Bucculatricidae is discussed.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The mitochondrial (mt) genome is, to date, the most extensively studied genomic system in insects, outnumbering nuclear genomes tenfold and representing all orders versus very few. Phylogenomic analysis methods have been tested extensively, identifying compositional bias and rate variation, both within and between lineages, as the principal issues confronting accurate analyses. Major studies at both inter- and intraordinal levels have contributed to our understanding of phylogenetic relationships within many groups. Genome rearrangements are an additional data type for defining relationships, with rearrangement synapomorphies identified across multiple orders and at many different taxonomic levels. Hymenoptera and Psocodea have greatly elevated rates of rearrangement offering both opportunities and pitfalls for identifying rearrangement synapomorphies in each group. Finally, insects are model systems for studying aberrant mt genomes, including truncated tRNAs and multichromosomal genomes. Greater integration of nuclear and mt genomic studies is necessary to further our understanding of insect genomic evolution.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

There’s nothing new about this recipe for success: toss in high-stress scenarios, flavour generously with competitive chefs, and garnish with a panel of celebrity judges. With all major broadcasters in the country now dishing up some form of reality cooking programme, Australians could be forgiven for having lost any expectation of original TV material. But that didn’t stop Channel Seven from taking Channel Nine to court last week, arguing its copyright in My Kitchen Rules had been infringed with Nine’s latest prime-time effort, The Hotplate. After the first few episodes went to air, Seven asked for an injunction to stop Nine from broadcasting any more episodes of the reality show. So let’s look at some common confusions about copyright law and how it relates to reality television. Because in this context, copyright infringement isn’t about shows sharing major similarities, or about protecting ideas, but rather the expression of these ideas in the final product. Still, stretching copyright law to protect the “vibe” of a work isn’t good for artists, TV producers or viewers: copyright was designed to nurture creativity, not stifle it.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Peanut (Arachis hypogaea) seed lectin, PNA is widely used to identify tumor specific antigen (T-antigen), Gal beta 1-3GalNAc on the eukaryotic cell surface. The functional amino acid coding region of a cDNA clone, pBSH-PN was PCR amplified and cloned downstream of the polyhedrin promoter in the Autographa californica nucleopolyhedrovirus (AcNPV) based transfer vector pVL1393. Co-transfection of Spodoptera frugiperda cells (Sf9) with the transfer vector, pAcPNA and AcRP6 (a recombinant AcNPV having B-gal downstream of the polyhedrin promoter) DNAs produced a recombinant virus, AcPNA which expresses PNA. Infection of suspension culture of Sf9 cells with plaque purified AcPNA produced as much as 9.8 mg PNA per liter (2.0 x 10(6) cells/ml) of serum-free medium. Intracellularly expressed protein (re-PNA) was purified to apparent homogeneity by affinity chromatography using ECD-Sepharose. Polyclonal antibodies against natural PNA (n-PNA) crossreacted with re-PNA. The subunit molecular weight (30 kDa), hemagglutination activity, and carbohydrate specificity of re-PNA were found to be identical to that of n-PNA, thus confirming the abundant production of a functionally active protein in the baculovirus expression system.