956 resultados para Infinite.
Resumo:
Treball de recerca realitzat per una alumna d'ensenyament secundari i guardonat amb un Premi CIRIT per fomentar l'esperit científic del Jovent l'any 2009. L'amor, l'etern tema en el món literari és el protagonista de la temàtica en què se centra el projecte però, des de les primeres mostres literàries fins l'actualitat són infinites les creacions aparegudes. El treball s'ha centrat en algunes que són una digna representació de l'amor literari en cada època i en diverses parts de la literatura universal. Fins aquí un plantejament que no s'alunya de cap model realitzat dins de la temàtica de la literatura comparada. Però per solucionar la manca d'un fil conductor es va crear una novel·la que és la que guia aquest treball. Així es mostra el que una persona pot extreure llegint diverses obres d'amor literari, i no només sobre teories generals, sinó també d'opinions i pròpies emocions que provoca l'experiència de lectura. De la mà d en Marco, un jove veronès, i la seva vella amiga, la bibliotecària Sophie, es guia al lector a través d'un viatge que sorgeix de les primeres mostres d'amor escrit i arriba fins als nostres dies.
Resumo:
The usual way to investigate the statistical properties of finitely generated subgroups of free groups, and of finite presentations of groups, is based on the so-called word-based distribution: subgroups are generated (finite presentations are determined) by randomly chosen k-tuples of reduced words, whose maximal length is allowed to tend to infinity. In this paper we adopt a different, though equally natural point of view: we investigate the statistical properties of the same objects, but with respect to the so-called graph-based distribution, recently introduced by Bassino, Nicaud and Weil. Here, subgroups (and finite presentations) are determined by randomly chosen Stallings graphs whose number of vertices tends to infinity. Our results show that these two distributions behave quite differently from each other, shedding a new light on which properties of finitely generated subgroups can be considered frequent or rare. For example, we show that malnormal subgroups of a free group are negligible in the raph-based distribution, while they are exponentially generic in the word-based distribution. Quite surprisingly, a random finite presentation generically presents the trivial group in this new distribution, while in the classical one it is known to generically present an infinite hyperbolic group.
Resumo:
In this paper we match the static disequilibrium unemployment model without frictions in the labor market and monopolistic competition with an infinite horizon model of growth. We compare the wages set at the firm, sector and national (centralized) levels, their unemployment rates and growth of the economic variables, for the Cobb-Douglas production function, in order to see under wich conditions the inverse U hypothesis between unemployment and centralization of wage bargain is confirmed. We also analyze, in the three wage setting systems, the effect of an increase in the monopoly power on employment and growth.
Resumo:
El desarrollo más reciente de los puentes arco ha llevado a una nueva tipología: los “puentes arco espaciales”. Se entiende por puente arco espacial todo puente arco en el que, por su configuración geométrica y estructural, las cargas gravitatorias generan esfuerzos no contenidos en el plano del arco. Por un lado, aparecen para satisfacer las necesidades funcionales cuando estructuras en arco resultan las más adecuadas para sostener tableros curvos y evitar así apoyos intermedios. Desde un punto de vista estético, surgen como demanda de los nuevos puentes en entornos urbanos, buscando, no sólo una forma cuidada, sino persiguiendo convertirse en emblemas de la ciudad a partir de la originalidad y la innovación. Su proyecto y construcción es posible gracias a las grandes posibilidades que ofrecen los nuevos métodos de cálculo y dibujo por ordenador, en los que, a través del incremento de memoria y rapidez, cada vez se emplean programas más completos y nuevas modelizaciones, más cercanas a la realidad. No menos importante es el desarrollo de los medios auxiliares de construcción y de las herramientas de CAD/CAM, que convierte en construibles por control numérico formas de manufactura impensables. Ello trasciende en infinitas posibilidades de diseño y estructura. Sin embargo, el diseño y construcción de estas nuevas tipologías no ha estado acompañado por el avance en el estado del conocimiento fundamentado en la investigación, ya que se han desarrollado pocos estudios que explican parcialmente la respuesta estructural de estos puentes. Existe, por lo tanto, la necesidad de profundizar en el estado del conocimiento y clarificar su respuesta estructural, así como de plantear, finalmente, criterios de diseño que sirvan de apoyo en las fases de concepción y de proyecto a estas nuevas tipologías.
Resumo:
The evolution of a quantitative phenotype is often envisioned as a trait substitution sequence where mutant alleles repeatedly replace resident ones. In infinite populations, the invasion fitness of a mutant in this two-allele representation of the evolutionary process is used to characterize features about long-term phenotypic evolution, such as singular points, convergence stability (established from first-order effects of selection), branching points, and evolutionary stability (established from second-order effects of selection). Here, we try to characterize long-term phenotypic evolution in finite populations from this two-allele representation of the evolutionary process. We construct a stochastic model describing evolutionary dynamics at non-rare mutant allele frequency. We then derive stability conditions based on stationary average mutant frequencies in the presence of vanishing mutation rates. We find that the second-order stability condition obtained from second-order effects of selection is identical to convergence stability. Thus, in two-allele systems in finite populations, convergence stability is enough to characterize long-term evolution under the trait substitution sequence assumption. We perform individual-based simulations to confirm our analytic results.
Resumo:
Graph pebbling is a network model for studying whether or not a given supply of discrete pebbles can satisfy a given demand via pebbling moves. A pebbling move across an edge of a graph takes two pebbles from one endpoint and places one pebble at the other endpoint; the other pebble is lost in transit as a toll. It has been shown that deciding whether a supply can meet a demand on a graph is NP-complete. The pebbling number of a graph is the smallest t such that every supply of t pebbles can satisfy every demand of one pebble. Deciding if the pebbling number is at most k is NP 2 -complete. In this paper we develop a tool, called theWeight Function Lemma, for computing upper bounds and sometimes exact values for pebbling numbers with the assistance of linear optimization. With this tool we are able to calculate the pebbling numbers of much larger graphs than in previous algorithms, and much more quickly as well. We also obtain results for many families of graphs, in many cases by hand, with much simpler and remarkably shorter proofs than given in previously existing arguments (certificates typically of size at most the number of vertices times the maximum degree), especially for highly symmetric graphs. Here we apply theWeight Function Lemma to several specific graphs, including the Petersen, Lemke, 4th weak Bruhat, Lemke squared, and two random graphs, as well as to a number of infinite families of graphs, such as trees, cycles, graph powers of cycles, cubes, and some generalized Petersen and Coxeter graphs. This partly answers a question of Pachter, et al., by computing the pebbling exponent of cycles to within an asymptotically small range. It is conceivable that this method yields an approximation algorithm for graph pebbling.
Resumo:
If A is a unital quasidiagonal C*-algebra, we construct a generalized inductive limit BA which is simple, unital and inherits many structural properties from A. If A is the unitization of a non-simple purely infinite algebra (e.g., the cone over a Cuntz algebra), then BA is tracially AF which, among other things, lends support to a conjecture of Toms.
Resumo:
Amino acids form the building blocks of all proteins. Naturally occurring amino acids are restricted to a few tens of sidechains, even when considering post-translational modifications and rare amino acids such as selenocysteine and pyrrolysine. However, the potential chemical diversity of amino acid sidechains is nearly infinite. Exploiting this diversity by using non-natural sidechains to expand the building blocks of proteins and peptides has recently found widespread applications in biochemistry, protein engineering and drug design. Despite these applications, there is currently no unified online bioinformatics resource for non-natural sidechains. With the SwissSidechain database (http://www.swisssidechain.ch), we offer a central and curated platform about non-natural sidechains for researchers in biochemistry, medicinal chemistry, protein engineering and molecular modeling. SwissSidechain provides biophysical, structural and molecular data for hundreds of commercially available non-natural amino acid sidechains, both in l- and d-configurations. The database can be easily browsed by sidechain names, families or physico-chemical properties. We also provide plugins to seamlessly insert non-natural sidechains into peptides and proteins using molecular visualization software, as well as topologies and parameters compatible with molecular mechanics software.
Resumo:
Random mating is the null model central to population genetics. One assumption behind random mating is that individuals mate an infinite number of times. This is obviously unrealistic. Here we show that when each female mates a finite number of times, the effective size of the population is substantially decreased.
Resumo:
Este Proyecto Final describe y sintetiza un camino de más de 19 años de encantamiento con la música y sus infinitos senderos y posibilidades. En términos académicos, es un proyecto que expresa la polivalencia de la ESMUC, ya que conjuga disciplinas de distintas especialidades: composición, interpretación, grabación, producción, comercialización, promoción y gestión de la música. Es un Proyecto Final con cuatro apartados: una reflexión general acerca de la promoción y gestión musical en la actual "Sociedad de la Información", un proyecto de publicación, un plan de empresa, y finalmente una bobina de trabajos musicales publicitarios.
Resumo:
Tant el medi transmissor com els equips d'enregistrament o reproducció de so introdueixen components de soroll d'alta freqüència als senyals. En aquest treball de final de carrera (TFC), s'ha dissenyat i implementat un sistema de filtrat d'àudio encaminat a filtrar aquestes components d'alta freqüència. Donat que l'oïda humana no pot percebre sons de més de 20 kHz, s'ha considerat aquest límit com a freqüència màxima a mantenir en la senyal.S'ha començat estudiant el senyal problema a través del seu espectre de freqüències simulat mitjançant la transformada discreta de Fourier (DFT, en anglès). Una vegada identificades les components d'alta freqüència a atenuar, s'han estudiat les diferents opcions de filtre passabaix.Inicialment, s'ha valorat la possibilitat del disseny de filtres analògics de Butterworth o Chebyshev, o de filtres digitals de tipus IIR (Infinite Impulse Response) basats en els primers. Tanmateix, malgrat assolir les especificacions en magnitud, mitjançant aquest filtres no s'obté una fase lineal en la banda de pas. Per això, s'ha realitzat un disseny de filtre digital tipus FIR (Finite Infinite Response) que compleix estrictament amb les especificacions i presenta una fase lineal en la banda de pas. S'ha simulat el comportament d'aquest filtre amb el senyal problema per tal d'assegurar el seu correcte funcionament.A continuació, s'ha implementat aquest últim disseny en llenguatge C i compilat per un microcontrolador de l'empresa Microchip. S'han realitzat proves de simulació mitjançant Stimulus del programa MPLAB. En definitiva, s'ha dissenyat un filtre passabaix de tipus FIR per acondicionar una senyal d'àudio que posteriorment s'ha implementat en un microcontrolador de Microchip.
Resumo:
The weak selection approximation of population genetics has made possible the analysis of social evolution under a considerable variety of biological scenarios. Despite its extensive usage, the accuracy of weak selection in predicting the emergence of altruism under limited dispersal when selection intensity increases remains unclear. Here, we derive the condition for the spread of an altruistic mutant in the infinite island model of dispersal under a Moran reproductive process and arbitrary strength of selection. The simplicity of the model allows us to compare weak and strong selection regimes analytically. Our results demonstrate that the weak selection approximation is robust to moderate increases in selection intensity and therefore provides a good approximation to understand the invasion of altruism in spatially structured population. In particular, we find that the weak selection approximation is excellent even if selection is very strong, when either migration is much stronger than selection or when patches are large. Importantly, we emphasize that the weak selection approximation provides the ideal condition for the invasion of altruism, and increasing selection intensity will impede the emergence of altruism. We discuss that this should also hold for more complicated life cycles and for culturally transmitted altruism. Using the weak selection approximation is therefore unlikely to miss out on any demographic scenario that lead to the evolution of altruism under limited dispersal.
Resumo:
Functional Data Analysis (FDA) deals with samples where a whole function is observedfor each individual. A particular case of FDA is when the observed functions are densityfunctions, that are also an example of infinite dimensional compositional data. In thiswork we compare several methods for dimensionality reduction for this particular typeof data: functional principal components analysis (PCA) with or without a previousdata transformation and multidimensional scaling (MDS) for diferent inter-densitiesdistances, one of them taking into account the compositional nature of density functions. The difeerent methods are applied to both artificial and real data (householdsincome distributions)
Resumo:
The preceding two editions of CoDaWork included talks on the possible considerationof densities as infinite compositions: Egozcue and D´ıaz-Barrero (2003) extended theEuclidean structure of the simplex to a Hilbert space structure of the set of densitieswithin a bounded interval, and van den Boogaart (2005) generalized this to the setof densities bounded by an arbitrary reference density. From the many variations ofthe Hilbert structures available, we work with three cases. For bounded variables, abasis derived from Legendre polynomials is used. For variables with a lower bound, westandardize them with respect to an exponential distribution and express their densitiesas coordinates in a basis derived from Laguerre polynomials. Finally, for unboundedvariables, a normal distribution is used as reference, and coordinates are obtained withrespect to a Hermite-polynomials-based basis.To get the coordinates, several approaches can be considered. A numerical accuracyproblem occurs if one estimates the coordinates directly by using discretized scalarproducts. Thus we propose to use a weighted linear regression approach, where all k-order polynomials are used as predictand variables and weights are proportional to thereference density. Finally, for the case of 2-order Hermite polinomials (normal reference)and 1-order Laguerre polinomials (exponential), one can also derive the coordinatesfrom their relationships to the classical mean and variance.Apart of these theoretical issues, this contribution focuses on the application of thistheory to two main problems in sedimentary geology: the comparison of several grainsize distributions, and the comparison among different rocks of the empirical distribution of a property measured on a batch of individual grains from the same rock orsediment, like their composition
Resumo:
Kuranishi's fundamental result (1962) associates to any compact complex manifold X&sub&0&/sub& a finite-dimensional analytic space which has to be thought of as a local moduli space of complex structures close to X&sub&0&/sub&. In this paper, we give an analogous statement for Levi-flat CR manifolds fibering properly over the circle by describing explicitely an infinite-dimensional Kuranishi type local moduli space of Levi-flat CR structures. We interpret this result in terms of Kodaira-Spencer deformation theory making clear the likenesses as well as the differences with the classical case. The article ends with applications and examples.