895 resultados para Infection virale
Resumo:
The occurrence of diseases is a significant setback for successful aquafarming. One of the common fish bacterial disease syndromes, Edwardsiellosis is caused by Edwardsiella tarda, a gram-negative, rod shaped bacterium associated with several diseases of marine and fresh water fish. In this study, an attempt was made to observe and analyze the onset of clinical symptoms and certain haematological parameters in Koi Carp, Cyprinus carpio L., following artificial infection with Edwardsiella tarda. The disease progress was observed and the clinical symptoms were monitored over a period of 15 days following infection. Fish were sampled at three day intervals to analyse the haematological parameters: total erythrocyte counts (RBC), total leucocyte counts (WBC), haemoglobin content and differential leucocyte count. Clinical symptoms observed included: erratic swimming behaviour, loss of appetite, haemorrhages, dropsy and exophthalmia. There was a significant decrease in the total RBC and haemoglobin levels by the 3rd and 6th day post infection, and an increase thereafter. WBC counts were higher in all infected groups in comparison to the control group. A significant increase in the number of neutrophils was found in the infected group up to the 9th day and a decrease thereafter. The lymphocyte number was significantly less up to the 12th day while the monocyte counts were significantly higher up to the 12th day post infection. The results showed that the bacterium, E. tarda, is pathogenic to Koi Carp. The hematological changes and clinical signs in infected fish reported in this paper will be helpful in the identification and the control of this infection.
Resumo:
In one of our recent studies, two HCV genotype 6 variants were identified in patients from Hong Kong and Guangxi in southern China, with injection drug use and HIV-1 co-infection. We report the complete genomic sequences for these two variants: GX004 and
Resumo:
Ozone due to having low half-life and devoid of environmental harmful effects is recognized as one of the most effective disinfectant and fungicide in aquaculture. The objective of this study is to consider the effects of periodicay ozonation, hydrogen peroxide treatment, and physical treatment capability in hatching rate enhancement. Three concentrations of 0.05, 0.1 and 0.15 ppm ozone (10 min) and peroxide hydrogen with dose of 500 and 1000 ppm in two procedures accompanied with physical treatment and without physical treatment were examined on hatching rate. In the first year, Egg ozonation (0.1 ppm) with physical treatment have been resulted the greatest hatching rate (81.4%). In the second year, egg treatment with 1000 ppm hydrogen peroxide with physical treatment have been showed the greatest hatching rate (78%). Average hatching rate for the blank control treatment (without disinfectin and physical treatment) was 32.7%. From the economic viewpoint, 0.05 ppm ozone with physical treatment, due to considerable minimizing at consumption energy and ozonation system retention costs, indicated as the best treatment than other ozone treatments for fungal control. Very low correlation (r=-0.14) have been observed between hatchery water temperature and fungal infection percentage in control treatment.
Resumo:
An understanding of how pathogens colonize their hosts is crucial for the rational design of vaccines or therapy. While the molecular factors facilitating the invasion and systemic infection by pathogens are a central focus of research in microbiology, the population biological aspects of colonization are still poorly understood. Here, we investigated the early colonization dynamics of Salmonella enterica subspecies 1 serovar Typhimurium (S. Tm) in the streptomycin mouse model for diarrhea. We focused on the first step on the way to systemic infection - the colonization of the cecal lymph node (cLN) from the gut - and studied roles of inflammation, dendritic cells and innate immune effectors in the colonization process. To this end, we inoculated mice with mixtures of seven wild type isogenic tagged strains (WITS) of S. Tm. The experimental data were analyzed with a newly developed mathematical model describing the stochastic immigration, replication and clearance of bacteria in the cLN. We estimated that in the beginning of infection only 300 bacterial cells arrive in the cLN per day. We further found that inflammation decreases the net replication rate in the cLN by 23%. In ccr7-/- mice, in which dendritic cell movement is impaired, the bacterial migration rate was reduced 10-fold. In contrast, cybb-/- mice that cannot generate toxic reactive oxygen species displayed a 4-fold higher migration rate from gut to cLN than wild type mice. Thus, combining infections with mixed inocula of barcoded strains and mathematical analysis represents a powerful method for disentangling immigration into the cLN from replication in this compartment. The estimated parameters provide an important baseline to assess and predict the efficacy of interventions. © 2013 Kaiser et al.
Resumo:
Toll-like receptor 4 (TLR4) is critical for LPS recognition and cellular responses. It also recognizes some viral envelope proteins. Detection mostly results in the inflammation rather than specific antiviral responses. However, it's unclear in fish. In this report, a TLR4 gene (named as GrTLR4b) was cloned and characterized from rare minnow Gobiocypris rarus. The full length of GrTLR4b cDNA consists of 2766 nucleotides and encodes a polypeptide of 818 amino acids with an estimated molecular mass of 94,518 Da and a predicted isoelectric point of 8.41. The predicted amino acid sequence comprises a signal peptide, six leucine-rich repeat (LRR) motifs, one leucine-rich repeat C-terminal (LRRCT) motif, followed by a transmembrane segment of 23 amino acids, and a cytoplasmic region of 167 amino acids containing one Toll - interleukin 1 - receptor (TIR) motif. It's closely similar to the zebrafish (Danio rerio) TLR4b amino acid sequence with an identity of 77%. Quantitative RT-PCR analysis showed GrTLR4b mRNA was constitutive expression in gill, heart, intestine, kidney, liver, muscle and spleen tissues in healthy animals and up-regulated by viruses and bacteria. After being infected by grass carp reovirus or Aeromonas hydrophila, GrTLR4b expressions were up-regulated from 24 h post-injection and lasted until the fish became moribund (P < 0.05). These data implied that TLR4 signaling pathway could be activated by both viral and bacterial infection in rare minnow. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
In this study, an IL-8 homologue has been cloned and identified from a reptile, Chinese soft-shelled turtle for the first time. The full-length cDNA of turtle IL-8 was 1188 bp and contained a 312 bp open reading frame (ORF) coding for a protein of 104 amino acids. The chemokine CXC domain, which contained Glu-Leu-Arg (ELR) motif and four cysteine residues, was well conserved in turtle IL-8. The 4924 bp genomic DNA of turtle IL-8 contained four exons and three introns. Phylogenetic analysis showed that the amino acid sequence of turtle IL-8 clustered together with birds. RT-PCR analysis showed that turtle IL-8 mRNA was constitutively expressed liver, spleen, kidney, heart, blood and intestine tissues of control turtles. Real-time quantitative PCR analysis further indicated that the turtle IL-8 mRNA expression was apparent in various tissues at 8 h and up-regulated significantly during 8 h-7 d after Aeromonas hydrophila infection. The present studies will help us to understand the evolution of IL-8 molecule and the inflammatory response mechanism in reptiles. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
The pathogenic process of highly pathogenic avian influenza virus (HPAIV) infection is poorly understood. To explore the differential expression of kidney genes as a result of HPAIV infection, two cDNA libraries were constructed from uninfected and infected kidneys by suppression subtractive hybridization (SSH). Fifteen genes including IFN-stimulated genes (ISG12), lymphocyte antigen 6 complex locus E gene (LY6E), matrix Gla protein gene (MGP), lysozyme gene, haemopoiesis related membrane protein I gene, KIAA1259, MGC68696, G6pe-prov protein gene (G6PC), MGC4504, alcohol dehydrogenase gene (ADH), glutathione S-transferase gene (GST), sodium-dependent high-affinity dicarboxylate transporter gene (SDCT), Synaptotagmin XV (SytXV) and two novel genes were found significantly up-regulated or dramatically suppressed. Differential expression of these genes was further identified by Northern blot. Functional analysis indicated that the regulation of their expression might contribute to the pathogenic process of HPAIV infection. In contrast, the increased expression of three IFN-stimulated genes named ISG12, LY6E, and haemopoiesis related membrane protein 1 gene might reflect host defense responses. Further study showed that ISG12 protein failed to directly interact with NS1 protein of HPAIV which expressed simultaneously in the organs where HPAIV replication occurred, by use of BacterioMatch two-hybrid system. Therefore, our findings may provide new insights into understanding the molecular mechanism underlying the pathophysiological process of HPAIV infection in chicken. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Toll-like receptor 3 (TLR3) plays a key role in activating immune responses during viral infection. To study the genes involved in the regulatory function of TLR3 in the rare minnow Gobiocypris rarus after viral infection, a full-length cDNA of TLR3 (GrTLR3) with a splice variant (GrTLR3s) was identified by homologous cloning and RACE techniques. The antiviral effector molecule Mx gene was cloned and partially sequenced. The mRNA expression levels of GrTLR3, GrTLR3s, and Mx were studied in different tissues before and after virus infection by real-time quantitative RT-PCR. The transcripts of all three genes in liver were significantly increased following GCRV infection (P<0.05). The mRNA levels in liver were upregulated at 24 h post-injection for GrTLR3 and GrTLR3s, and at 12 h for Mx. The upregulated expression levels were several folds for GrTLR3s, tens of folds for GrTLR3, and hundreds of folds for Mx. By semi-quantitative RT-PCR, GrTLR3 and Mx expressed at all the developmental stages, whereas GrTLR3s could only be detected at later developmental stages. Using RNAi and transgenic techniques, GrTLR3 mediated Mx expression but GrTLR3s did not. The time-dependent upregulation of receptor and effector, and the Mx over-expression dependent on TLR3, indicated that GrTLR3 regulated Mx expression in viral infection through a configuration change in rare minnow, and its splice variant did not contribute to the process.
Resumo:
Voltage-dependent anion channel (VDAC, also known as mitochondrial porin) is acknowledged to play an important role in stress-induced mammalian apoptosis. In this study, Paralichthys olivaceus VDAC (PoVDAC) gene was identified as a virally induced gene from Scophthalmus Maximus Rhabdovirus (SMRV)-infected flounder embryonic cells (FEC). The full length of PoVDAC cDNA is 1380 bp with an open reading frame of 852 bp encoding a 283 amino acid protein. The deduced PoVDAC contains one alpha-helix, 13 transmembrane beta-strands and one eukaryotic mitochondrial porin signature motif. Constitutive expression of PoVDAC was confirmed in all tested tissues by real-time PCR. Further expression analysis revealed PoVDAC mRNA was upregulated by viral infection. We prepared fish antiserum against recombinant VDAC proteins and detected the PoVDAC in heart lysates from flounder as a 32 kDa band on western blot. Overexpression of PoVDAC in fish cells induced apoptosis. Immunofluoresence localization indicated that the significant distribution changes of PoVDAC have occurred in virus-induced apoptotic cells. This is the first report on the inductive expression of VDAC by viral infection, suggesting that PoVDAC might be mediated flounder antiviral immune response through induction of apoptosis. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
A fish cell line, fathead minnow (FHM) cell, was used to investigate the alteration of mitochondrial dynamics and the mechanism of apoptosis under Rana grylio virus (RGV) infection. Microscopy observations, flow-cytometry analysis and molecular marker detection revealed the apoptotic fate of the RGV-infected cells. Some typical apoptotic characteristics, such as chromatin condensation, DNA fragmentation and mitochondrial fragmentation, were observed, and significantly morphological changes of mitochondria, including size, shape, internal structure and distribution, were revealed. The mitochondria in RGV-infected cells were aggregated around the viromatrix, and the aggregation could be blocked by colchicine. Moreover, the Delta psi m collapse was induced, and caspase-9 and caspase-3 were activated in the RGV-infected cells. In addition, NF-kappa B activation and intracellular Ca2+ increase were also detected at different times after infection. The data revealed the detailed dynamics of mitochondrion-mediated apoptosis induced by an iridovirus, and provided the first report on mitochondrial fragmentation during virus-induced apoptosis in fish cells.
Resumo:
Co-infection of two viruses has been observed in mandarin fish (Siniperca chuatsi), but the two viruses have not been characterized. In this study, a rhabdovirus has been isolated from the co-infected two viruses extracted from the diseased mandarin fish, and its morphological structure and partial biochemical and biophysical characteristics have been observed and analyzed. The isolated rhabdovirus has a typical bullet shape, and is therefore called S. chttatsi rhabdovirus (SCRV). And, the isolated rhabdovirus produced a higher titer (10(8.5) TCID50 ml(-1)) than did the co-infecting viruses (10(6.5) TCID50 ml(-1)). Subsequently, the viral genome RNA was extracted, and used as template to clone the complete nucleoprotein (N) gene by RT-PCR amplification. Cloning and sequencing of the SCRV N protein revealed 42%-31% amino acid identities to that of trout rhabdovirus 903/87 and the rhabdoviruses in genus Vesiculovirus. SDS-PAGE separation of the isolated SCRV and other two rhabdoviruses also revealed obvious polypeptide profile difference. Moreover, the anti-SCRV N protein antibody was prepared, and the anti-SCRV N protein antibody only could recognize the SCRV N protein, whereas no antigenicity was detected in other two rhabdoviruses. The data suggested that the SCRV should be a rhabdovirus member related to the genus Vesiculovirus in the Rhabdoviridae. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Protein arginine methyltransferase 1 (PRMT1) is currently thought as an effector to regulate interferon (IFN) signalling. Here Paralichthys olivaceus PRMT1 (PoPRMT1) gene was identified as a vitally induced gene from UV-inactivated Scophthalmus maximus Rhabdovirus (SMRV)-infected flounder embryonic cells (FEC). PoPMRT1 encodes a 341-amino-acid protein that shares the conserved domains including post-I, motif I, II and III. Homology comparisons show that the putative PoPMRT1 protein is the closest to zebrafish PMRT1 and belongs to type I PRMT family (including PRMT1, PRMT2, PRMT3, PRMT4, PRMT6, PRMT8). Expression analyses revealed an extensive distribution of PoPMRT1 in all tested tissues of flounder. In vitro induction of PoPRMT1 was determined in UV-inactivated SMRV-infected FEC cells, and under the same conditions, flounder Mx wash also transcriptionally up-regulated, indicating that an IFN response might be triggered. Additionally, live SMRV infection of flounders induced an increased expression of PoPRMT1 mRNA and protein significantly in spleen, and to a lesser extent in head kidney and intestine. Immunofluorescence analysis revealed a major cyptoplasmic distribution of PoPRMT1 in normal FEC but an obvious increase occurred in nucleus in response to UV-inactivated SMRV. This is the first report on in vitro and in vivo expression of fish PRMT1 by virus infection, suggesting that PoPRMT1 might be implicated in flounder antiviral immune response. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
Immunostimulants are the substances, which enhance the non-specific defence mechanism and provide resistance against the invading pathogenic micro-organism. In order to increase the immunity of shrimps against the WSSV, the methanolic extracts of five different herbal medicinal plants like Cyanodon dactylon, Aegle marmelos, Tinospora cordifolia, Picrorhiza kurooa and Eclipta alba were selected and mixed thoroughly in equal proportion. The mixed extract was supplemented with various concentrations viz. 100 (A), 200 (B), 400 (C), and 800 (D) mg kg(-1) through artificial diets individually. The prepared diets (A-D) were fed individually to WSSV free healthy shrimp Penaeus monodon with an average weight of 8.0 +/- 0.5 g for 25 days. Control diet (E), devoid of herbal extract was also fed to shrimps simultaneously. After 25 days of feeding experiment, the shrimps were challenged with WSSV, which were isolated and propagated from the infected crustaceans. The shrimps succumbed to death within 7 days when fed on no herbal immunostimulant diet (E). Among the different concentrations of herbal immunostimulant supplemented diets, the shrimps fed on diet D (800 mg kg(-1)) significantly (P < 0.0001) had more survival (74%) and reduction in the viral load. Also the better performance of haematological, biochemical and immunological parameters was found in the immunostimulant incorporated diets fed shrimps. The present work revealed that the application of herbal immunostimulants will be effective against shrimp viral pathogenesis and they can be recommended for shrimp culture. (c) 2006 Published by Elsevier Ltd.
Resumo:
Heat shock proteins (Hsps) are a family of highly conserved cellular proteins present in all organisms, mediating a range of essential housekeeping and cytoprotective functions as well-known molecular chaperons and recently as regulators of the immune response. By subtractive suppression hybridization, three Hsp40 homologues have been identified in the flounder (Paralichthys olivaceus) embryonic cells (FEC) after treatment with UV-inactivated turbot (Scophthalmus maximus L.) rhabdovirus (SMRV), termed PoHsp40A4, PoHsp40B6 and PoHsp40B11, whose encoded proteins all possess the conserved DnaJ domain, a signature motif of the Hsp40 family. Based on different protein structure and phylogenetic analysis, they can be categorized into two subfamilies, PoHsp40A4 for Type I Hsp40, PoHsp40B6 and PoHsp40B11 for Type 11 Hsp40. Further expression analysis revealed two very different types of kinetics in response either to heat shock or to virus infection, with a marked induction for PoHsp4OA4 and a weak one for both PoHsp40B6 and PoHsp40B11. A very distinct tissue distribution of mRNA was also revealed among the three genes, even between PoHsp40B6 and PoHsp40B11. This is the first report on the transcriptional induction of Hsp40 in virally stimulated fish cells, and the differential expressions might reflect their different roles in unstressed and stressed cells. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
Aeromonas hydrophila and Vibrio fluvialis are the causative agents of a serious haemorrhagic septicaemia that affects a wide range of freshwater fish in China. In order to develop a bivalent anti-A. hydrophila and anti-V. fluvialis formalin-killed vaccine to prevent this disease, an orthogonal array design (OAD) method was used to optimize the production conditions, using three factors, each having three levels. The effects of these factors and levels on the relative per cent survival for crucian carp were quantitatively evaluated by analysis of variance. The final optimized formulation was established. The data showed that inactivation temperature had a significant effect on the potency of vaccine, but formalin concentration did not. The bivalent vaccine could elicit a strong humoral response in crucian carp (Carassius auratus L.) against both A. hydrophila and V. fluvialis simultaneously, which peaked at 3 or 5 weeks respectively. Antibody titres remained high until week 12, the end of the experiment, after a single intraperitoneal injection. The verification experiment confirmed that an optimized preparation could provide protection for fish at least against A. hydrophila infection, and did perform better than the non-optimized vaccine judged by the antibody levels and protection rate, suggesting that OAD is of value in the development of improved vaccine formulations.