347 resultados para Inbreeding.


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sustainable forest restoration and management practices require a thorough understanding of the influence that habitat fragmentation has on the processes shaping genetic variation and its distribution in tree populations. We quantified genetic variation at isozyme markers and chloroplast DNA (cpDNA), analysed by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) in severely fragmented populations of Sorbus aucuparia (Rosaceae) in a single catchment (Moffat) in southern Scotland. Remnants maintain surprisingly high levels of gene diversity (H-E) for isozymes (H-E = 0.195) and cpDNA markers (H-E = 0.490). Estimates are very similar to those from non-fragmented populations in continental Europe, even though the latter were sampled over a much larger spatial scale. Overall, no genetic bottleneck or departures from random mating were detected in the Moffat fragments. However, genetic differentiation among remnants was detected for both types of marker (isozymes Theta(n) = 0.043, cpDNA Theta(c) = 0.131; G-test, P-value < 0.001). In this self-incompatible, insect-pollinated, bird-dispersed tree species, the estimated ratio of pollen flow to seed flow between fragments is close to 1 (r = 1.36). Reduced pollen-mediated gene flow is a likely consequence of habitat fragmentation, but effective seed dispersal by birds is probably helping to maintain high levels of genetic diversity within remnants and reduce genetic differentiation between them.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Twelve microsatellite loci are presented for the biological control agent Chiasmia assimilis (Warren, 1899). These microsatellite loci were obtained through the construction of an enriched library, overcoming previous reported difficulties with obtaining microsatellites from other Lepidoptera due to the low frequency of microsatellites in their genomes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

To examine the effects of recent habitat fragmentation, we assayed genetic diversity in a rain forest endemic lizard, the prickly forest skink (Gnypetoscincus queenslandiae), from seven forest fragments and five sites in continuous forest on the Atherton tableland of northeastern Queensland, Australia. The rain forest in this region was fragmented by logging and clearing for dairy farms in the early 1900s and most forest fragments studied have been isolated for 50-80 years or nine to 12 skink generations. We genotyped 411 individuals at nine microsatellite DNA loci and found fewer alleles per locus in prickly forest skinks from small rain forest fragments and a lower ratio of allele number to allele size range in forest fragments than in continuous forest, indicative of a decrease in effective population size. In contrast, and as expected for populations with small neighbourhood sizes, neither heterozygosity nor variance in allele size differed between fragments and sites in continuous forests. Considering measures of among population differentiation, there was no increase in F-ST among fragments and a significant isolation by distance pattern was identified across all 12 sites. However, the relationship between genetic (F-ST) and geographical distance was significantly stronger for continuous forest sites than for fragments, consistent with disruption of gene flow among the latter. The observed changes in genetic diversity within and among populations are small, but in the direction predicted by the theory of genetic erosion in recently fragmented populations. The results also illustrate the inherent difficulty in detecting genetic consequences of recent habitat fragmentation, even in genetically variable species, and especially when effective population size and dispersal rates are low.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Genetic diversity and population structure were investigated across the core range of Tasmanian devils (Sarcophilus laniarius; Dasyuridae), a wide-ranging marsupial carnivore restricted to the island of Tasmania. Heterozygosity (0.386-0.467) and allelic diversity (2.7-3.3) were low in all subpopulations and allelic size ranges were small and almost continuous, consistent with a founder effect. Island effects and repeated periods of low population density may also have contributed to the low variation. Within continuous habitat, gene flow appears extensive up to 50 km (high assignment rates to source or close neighbour populations; nonsignificant values of pairwise F-ST), in agreement with movement data. At larger scales (150-250 km), gene flow is reduced (significant pairwise F-ST) but there is no evidence for isolation by distance. The most substantial genetic structuring was observed for comparisons spanning unsuitable habitat, implying limited dispersal of devils between the well-connected, eastern populations and a smaller northwestern population. The genetic distinctiveness of the northwestern population was reflected in all analyses: unique alleles; multivariate analyses of gene frequency (multidimensional scaling, minimum spanning tree, nearest neighbour); high self-assignment (95%); two distinct populations for Tasmania were detected in isolation by distance and in Bayesian model-based clustering analyses. Marsupial carnivores appear to have stronger population subdivisions than their placental counterparts.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background and Aims Quercus petraea colonized Ireland after the last glaciation from refugia on mainland Europe. Deforestation. however. beginning in Neolithic times, has resulted in small, scattered forest fragments, now covering less than 12 000 ha. Methods Plastid (three fragments) and microsatellite variation (13 loci) were characterized in seven Irish populations sampled along a north-south gradient. Using Bayesian approaches and Wright's F-statistics, the effects of colonization and fragmentation on the genetic structure and mating patterns of extant oak populations were investigated. Key-Results All Populations possessed cytotypes common to the Iberian Peninsula. Despite the distance from the refugial core and the extensive deforestation in Ireland, nuclear genetic variation was high and comparable to mainland Europe. Low population differentiation was observed within Ireland and populations showed no evidence for isolation by distance. As expected of a marker with an effective Population size of one-quarter relative to the nuclear genome, plastid variation indicated higher differentiation. Individual inbreeding coefficients indicated high levels of outcrossing. Conclusions Consistent with a large effective Population size in the historical migrant gene pool and/or with high gene flow among populations, high within-population diversity and low population differentiation was observred within Ireland. It is proposed that native Q. petraea populations in Ireland share a common phylogeographic history and that the present genetic structure does not reflect founder effects. (C) 2004 Annals of Botany Company.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

While the feasibility of bottleneck-induced speciation is in doubt, population bottlenecks may still affect the speciation process by interacting with divergent selection. To explore this possibility, I conducted a laboratory speciation experiment using Drosophila pseudoobscura involving 78 replicate populations assigned in a two-way factorial design to both bottleneck (present vs. absent) and environment (ancestral vs. novel) treatments. Populations independently evolved under these treatments and were then tested for assortative mating and male mating success against their common ancestor. Bottlenecks alone did not generate any premating isolation, despite an experimental design that was conducive to bottleneck-induced speciation. Premating isolation also did not evolve in the novel environment treatment, neither in the presence nor absence of bottlenecks. However, male mating success was significantly reduced in the novel environment treatment, both as a plastic response to this environment and as a result of environment-dependent inbreeding effects in the bottlenecked populations. Reduced mating success of derived males will hamper speciation by enhancing the mating success of immigrant, ancestral males. Novel environments are generally thought to promote ecological speciation by generating divergent natural selection. In the current experiment, however, the novel environment did not cause the evolution of any premating isolation and it reduced the likelihood of speciation through its effects on male mating success.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The theoretical impacts of anthropogenic habitat degradation on genetic resources have been well articulated. Here we use a simulation approach to assess the magnitude of expected genetic change, and review 31 studies of 23 neotropical tree species to assess whether empirical case studies conform to theory. Major differences in the sensitivity of measures to detect the genetic health of degraded populations were obvious. Most studies employing genetic diversity (nine out of 13) found no significant consequences, yet most that assessed progeny inbreeding (six out of eight), reproductive output (seven out of 10) and fitness (all six) highlighted significant impacts. These observations are in line with theory, where inbreeding is observed immediately following impact, but genetic diversity is lost slowly over subsequent generations, which for trees may take decades. Studies also highlight the ecological, not just genetic, consequences of habitat degradation that can cause reduced seed set and progeny fitness. Unexpectedly, two studies examining pollen flow using paternity analysis highlight an extensive network of gene flow at smaller spatial scales (less than 10 km). Gene flow can thus mitigate against loss of genetic diversity and assist in long-term population viability, even in degraded landscapes. Unfortunately, the surveyed studies were too few and heterogeneous to examine concepts of population size thresholds and genetic resilience in relation to life history. Future suggested research priorities include undertaking integrated studies on a range of species in the same landscapes; better documentation of the extent and duration of impact; and most importantly, combining neutral marker, pollination dynamics, ecological consequences, and progeny fitness assessment within single studies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Despite the typically low population densities and animal-mediated pollination of tropical forest trees, outcrossing and long-distance pollen dispersal are the norm. We reviewed the genetic literature on mating systems and pollen dispersal for neotropical trees to identify the ecological and phylogenetic correlates. The 36 studies surveyed found >90% outcrossed mating for 45 hermaphroditic or monoecious species. Self-fertilization rates varied inversely with population density and showed phylogenetic and geographic trends. The few direct measures of pollen flow (N = 11 studies) suggest that pollen dispersal is widespread among low-density tropical trees, ranging from a mean of 200 m to over 19 km for species pollinated by small insects or bats. Future research needs to examine (1) the effect of inbreeding depression on observed outcrossing rates, (2) pollen dispersal in a wide range of pollination syndromes and ecological classes, (3) and the range of variation of mating system expression at different hierarchical levels, including individual, seasonal, population, ecological, landscape and range wide.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

New tools derived from advances in molecular biology have not been widely adopted in plant breeding for complex traits because of the inability to connect information at gene level to the phenotype in a manner that is useful for selection. In this study, we explored whether physiological dissection and integrative modelling of complex traits could link phenotype complexity to underlying genetic systems in a way that enhanced the power of molecular breeding strategies. A crop and breeding system simulation study on sorghum, which involved variation in 4 key adaptive traits-phenology, osmotic adjustment, transpiration efficiency, stay-green-and a broad range of production environments in north-eastern Australia, was used. The full matrix of simulated phenotypes, which consisted of 547 location-season combinations and 4235 genotypic expression states, was analysed for genetic and environmental effects. The analysis was conducted in stages assuming gradually increased understanding of gene-to-phenotype relationships, which would arise from physiological dissection and modelling. It was found that environmental characterisation and physiological knowledge helped to explain and unravel gene and environment context dependencies in the data. Based on the analyses of gene effects, a range of marker-assisted selection breeding strategies was simulated. It was shown that the inclusion of knowledge resulting from trait physiology and modelling generated an enhanced rate of yield advance over cycles of selection. This occurred because the knowledge associated with component trait physiology and extrapolation to the target population of environments by modelling removed confounding effects associated with environment and gene context dependencies for the markers used. Developing and implementing this gene-to-phenotype capability in crop improvement requires enhanced attention to phenotyping, ecophysiological modelling, and validation studies to test the stability of candidate genetic regions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Genetic analysis in animals has been used for many applications, such as kinship analysis, for determining the sire of an offspring when a female has been exposed to multiple males, determining parentage when an animal switches offspring with another dam, extended lineage reconstruction, estimating inbreeding, identification in breed registries, and speciation. It now also is being used increasingly to characterize animal materials in forensic cases. As such, it is important to operate under a set of minimum guidelines that assures that all service providers have a template to follow for quality practices. None have been delineated for animal genetic identity testing. Based on the model for human DNA forensic analyses, a basic discussion of the issues and guidelines is provided for animal testing to include analytical practices, data evaluation, nomenclature, allele designation, statistics, validation, proficiency testing, lineage markers, casework files, and reporting. These should provide a basis for professional societies and/or working groups to establish more formalized recommendations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In species with low levels of dispersal the chance of closely related individuals breeding may be a potential problem; sex-biased dispersal is a mechanism that may decrease the possibility of cosanguineous mating. Fragmentation of the habitat in which a species lives may affect mechanisms such as sex-biased dispersal, which may in turn exacerbate more direct effects of fragmentation such as decreasing population size that may lead to inbreeding depression. Relatedness statistics calculated using microsatellite DNA data showed that rainforest fragmentation has had an effect on the patterns of dispersal in the prickly forest skink (Gnypetoscincus queenslandiae), a rainforest endemic of the Wet Tropics of north eastern Australia. A lower level of relatedness was found in fragments compared to continuous forest sites due to a significantly lower level of pairwise relatedness between males in rainforest fragments. The pattern of genetic relatedness between sexes indicates the presence of male-biased dispersal in this species, with a stronger pattern detected in populations in rainforest fragments. Male prickly forest skinks may have to move further in fragmented habitat in order to find mates or suitable habitat logs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Loss of genetic diversity and increased population differentiation from source populations are common problems associated with translocation programmes established from captive-bred stock or a small number of founders. The bridled nailtail wallaby is one of the most endangered macropods in Australia, having been reduced to a single remnant population in the last 100 years. A translocated population of bridled nailtail wallabies was established using animals sourced directly from the remnant population (wild-released) as well as the progeny of animals collected for a captive breeding programme (captive-bred). The aims of this study were to compare genetic diversity among released animals and their wild-born progeny to genetic diversity observed in the remnant population, and to monitor changes in genetic diversity over time as more animals were released into the population. Heterozygosity did not differ between the translocated and remnant population; however, allelic diversity was significantly reduced across all released animals and their wild-born progeny. Animals bred in captivity and their wild-born progeny were also significantly differentiated from the source population after just four generations. Wild-released animals, however, were representative of the source population and several alleles were unique to this group. Both heterozygosity and allelic diversity among translocated animals decreased over time with the additional release of captive-bred animals, as no new genetic stock was added to the population. Captive breeding programmes can provide large numbers of animals for release, but this study highlights the importance of sourcing animals directly from remnant populations in order to maintain genetic diversity and minimise genetic drift.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ecological genetic studies have demonstrated that spatial patterns of mating dispersal, the dispersal of gametes through mating behaviour, can facilitate inbreeding avoidance and strongly influence the structure of populations, particularly in highly philopatric species. Elements of breeding group dynamics, such as strong structuring and sex-biased dispersal among groups, can also minimize inbreeding and positively influence levels of genetic diversity within populations. Rock-wallabies are highly philopatric mid-sized mammals whose strong dependence on rocky terrain has resulted in series of discreet, small colonies in the landscape. Populations show no signs of inbreeding and maintain high levels of genetic diversity despite strong patterns of limited gene flow within and among colonies. We used this species to investigate the importance of mating dispersal and breeding group structure to inbreeding avoidance within a 'small' population. We examined the spatial patterns of mating dispersal, the extent of kinship within breeding groups, and the degree of relatedness among brush-tailed rock-wallaby breeding pairs within a colony in southeast Queensland. Parentage data revealed remarkably restricted mating dispersal and strong breeding group structuring for a mid-sized mammal. Breeding groups showed significant levels of female kinship with evidence of male dispersal among groups. We found no evidence for inbreeding avoidance through mate choice; however, anecdotal data suggest the importance of life history traits to inbreeding avoidance between first-degree relatives. We suggest that the restricted pattern of mating dispersal and strong breeding group structuring facilitates inbreeding avoidance within colonies. These results provide insight into the population structure and maintenance of genetic diversity within colonies of the threatened brush-tailed rock-wallaby.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sclerotinia species are sexually reproducing ascomycetes. In the past S. minor and S. sclerotiorum, have been assumed to be homothallic because of the self-fertility of colonies derived from single ascospores. S. trifoliorum has previously been shown to be bipolar heterothallic due to the presence of four self-fertile and four self-sterile ascospores within a single ascus [Uhm, J.Y., Fujii, H., 1983a. Ascospore dimorphism in Sclerotinia trifoliorum and cultural characters of strains from different-sized spores. Phytopathology 73: 565-569]. However, isolates of S. minor and S. sclerotiorum were proven to be homothallic ascomycetes, by self-fertility of all eight ascospores within an ascus. Apothecia were raised from all eight ascospores of a single tetrad from four isolates of S. minor and from an isolate of S. sclerotiorum, indicating that inbreeding may be the predominant breeding mechanism of S. minor. Ascospores from asci of S. minor and S. sclerotiorum were predominantly monomorphic, but rare examples of ascospore dimorphism similar to S. trifoliorum were found. (c) 2006 The British Mycological Society. Published by Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

I investigated the phenology and breeding systems of two Florida endemic pawpaws, Asimina reticulata, widespread in peninsular Florida, and A. tetramera, a federally endangered species limited to two counties on the Atlantic Coastal Ridge. The purpose of this study was to determine if differences contribute to the rarity of Asimina tetramera compared with A. reticulata. The study was conducted in sand pine scrub sites with the largest populations of A. tetramera in the two counties. Flowering seasons differ for the two species. Both species are hermaphroditic and strongly protogynous. Pollination experiments show that neither species is autogamous and the primary breeding mechanism is outcrossing, although low levels of geitonogamous pollination occur in mature scrub habitats. High levels of inbreeding depression were noted in both species at both sites but inbreeding depression was relaxed the first year post-fire. Fruit set in mature habitats may be pollinator limited. ^ I studied insects associated with the flowers in sand pine scrub habitat in southeastern Florida from 1994–1996. The most commonly represented orders were Coleoptera (25 spp.), Lepidoptera. (3 spp.) and Hymenoptera. (3 spp.). All Coleoptera. were flower visitors; one species, Euphoria sepulchralis (Fabricius)(Scarabeaidae), visited flowers of the two Asimina species at both sites. Eurytides marcellus (Cramer) (Lepidoptera: Papilionidae) eggs and larvae were observed on both species of Asimina during each year of the study. ^ Resource management techniques were applied to a mature sand pine scrub community in Jonathan Dickinson State Park in southeastern Florida for the management of Asimina tetramera. Manipulations conducted in 1996 included combinations of fire and mechanical treatments. I measured effects of these treatments on flowering and fruit set on A. tetramera and found cutting and burning was most effective in increasing flowering, followed by burning. Mechanical cutting and mulching had no significant effect. ^