944 resultados para Impaired visuospatial working memory
Resumo:
The prefrontal cortex is continuously required for working memory processing during wakefulness, but is particularly hypoactivated during sleep and in psychiatric disorders such as schizophrenia. Ammon`s horn CA1 hippocampus subfield (CA1) afferents provide a functional modulatory path that is subjected to synaptic plasticity and a prominent monoaminergic influence. However, little is known about the muscarinic cholinergic effects on prefrontal synapses. Here, we investigated the effects of the muscarinic agonist, pilocarpine (PILO), on the induction and maintenance of CA1-medial prefrontal cortex (mPFC) long-term potentiation (LTP) as well as on brain monoamine levels. Field evoked responses were recorded in urethane-anesthetized rats during baseline (50 min) and after LTP (130 min), and compared with controls. LTP was induced 20 min after PILO administration (15 mg/kg, i.p.) or vehicle (NaCl 0.15 M, i.p.). In a separate group of animals, the hippocampus and mPFC were microdissected 20 min after PILO injection and used to quantify monoamine levels. Our results show that PILO potentiates the late-phase of mPFC UP without affecting either post-tetanic potentiation or early LTP (20 min). This effect was correlated with a significant decrease in relative delta (1-4 Hz) power and an increase in sigma (10-15 Hz) and gamma (2540 Hz) powers in CA1. Monoamine levels were specifically altered in the mPFC. We observed a decrease in dopamine, 5-HT, 5-hydroxyindolacetic acid and noradrenaline levels, with no changes in 3,4-hydroxyphenylacetic acid levels. Our data, therefore, suggest that muscarinic activation exerts a boosting effect on mPFC synaptic plasticity and possibly on mPFC-dependent memories, associated to monoaminergic changes. (C) 2008 IBRO. Published by Elsevier Ltd. All rights reserved.
Resumo:
The P3(00) event-related potential (ERP) component is widely used as a measure of cognitive functioning and provides a sensitive electrophysiological index of the attentional and working memory demands of a task. This study investigated what proportion of the variance in the amplitude and latency of the P3, elicited in a delayed response working memory task, could be attributed to genetic factors. In 335 adolescent twin pairs and 48 siblings, the amplitude and latency of the P3 were examined at frontal, central, and parietal sites. Additive genetic factors accounted for 48% to 61% of the variance in P3 amplitude. Approximately one-third of the genetic variation at frontal sites was mediated by a common genetic factor that also influenced the genetic variation at parietal and central sites. Familial resemblance in P3 latency was due to genetic influence that accounted for 44% to 50% of the variance. Genetic covariance in P3 latency across sites was substantial, with a large part of the variance found at parietal, central, and frontal sites attributed to a common genetic factor. The findings provide further evidence that the P3 is a promising phenotype of neural activity of the brain and has the potential to be used in linkage and association analysis in the search for quantitative trait loci (QTLs) influencing cognition.
Resumo:
There is overwhelming evidence for the existence of substantial genetic influences on individual differences in general and specific cognitive abilities, especially in adults. The actual localization and identification of genes underlying variation in cognitive abilities and intelligence has only just started, however. Successes are currently limited to neurological mutations with rather severe cognitive effects. The current approaches to trace genes responsible for variation in the normal ranges of cognitive ability consist of large scale linkage and association studies. These are hampered by the usual problems of low statistical power to detect quantitative trait loci (QTLs) of small effect. One strategy to boost the power of genomic searches is to employ endophenotypes of cognition derived from the booming field of cognitive neuroscience This special issue of Behavior Genetics reports on one of the first genome-wide association studies for general IQ. A second paper summarizes candidate genes for cognition, based on animal studies. A series of papers then introduces two additional levels of analysis in the ldquoblack boxrdquo between genes and cognitive ability: (1) behavioral measures of information-processing speed (inspection time, reaction time, rapid naming) and working memory capacity (performance on on single or dual tasks of verbal and spatio-visual working memory), and (2) electrophyiosological derived measures of brain function (e.g., event-related potentials). The obvious way to assess the reliability and validity of these endophenotypes and their usefulness in the search for cognitive ability genes is through the examination of their genetic architecture in twin family studies. Papers in this special issue show that much of the association between intelligence and speed-of-information processing/brain function is due to a common gene or set of genes, and thereby demonstrate the usefulness of considering these measures in gene-hunting studies for IQ.
Resumo:
Amultidisciplinary collaborative study examining cognition in a large sample of twins is outlined. A common experimental protocol and design is used in The Netherlands, Australia and Japan to measure cognitive ability using traditional IQ measures (i.e., psychometric IQ), processing speed (e.g., reaction time [RT] and inspection time [IT]), and working memory (e.g., spatial span, delayed response [DR] performance). The main aim is to investigate the genetic covariation among these cognitive phenotypes in order to use the correlated biological markers in future linkage and association analyses to detect quantitativetrait loci (QTLs). We outline the study and methodology, and report results from our preliminary analyses that examines the heritability of processing speed and working memory indices, and their phenotypic correlation with IQ. Heritability of Full Scale IQ was 87% in the Netherlands, 83% in Australia, and 71% in Japan. Heritability estimates for processing speed and working memory indices ranged from 33–64%. Associations of IQ with RT and IT (−0.28 to −0.36) replicated previous findings with those of higher cognitive ability showing faster speed of processing. Similarly, significant correlations were indicated between IQ and the spatial span working memory task (storage [0.31], executive processing [0.37]) and the DR working memory task (0.25), with those of higher cognitive ability showing better memory performance. These analyses establish the heritability of the processing speed and working memory measures to be used in our collaborative twin study of cognition, and support the findings that individual differences in processing speed and working memory may underlie individual differences in psychometric IQ.
Resumo:
A longitudinal study investigated the claim that phonological memory contributes to vocabulary acquisition in young children. In the first phase, children were given tests of receptive vocabulary, receptive grammar, nonword repetition, phonological sensitivity (or awareness), and performance IQ. In the second phase, children were given the nonword repetition and receptive vocabulary tests. In Session 1, both nonword repetition and phonological sensitivity accounted for variation in receptive vocabulary and grammar after performance IQ effects were controlled. When phonological sensitivity was also controlled, nonword repetition did not account for significant additional variation in receptive vocabulary and grammar, When performance IQ and autoregression effects were controlled, all Session I verbal ability measures predicted Session 2 vocabulary, but only Session 1 vocabulary predicted Session 2 nonword repetition. When phonological sensitivity was also controlled. Session 1 nonword repetition (leniently scored) predicted Session 2 vocabulary. Overall, these findings show qualified support for the claim that the capacity component of nonword repetition contributes directly to vocabulary in young children. They suggest that the association between nonword repetition and vocabulary in young children may, to a substantial extent, reflect a latent phonological processing ability that is also manifest in phonological sensitivity.
Resumo:
Studies of delayed nonmatching-to-sample (DNMS) performance following lesions of the monkey cortex have revealed a critical circuit of brain regions involved in forming memories and retaining and retrieving stimulus representations. Using event-related functional magnetic resonance imaging (fMRI), we measured brain activity in 10 healthy human participants during performance of a trial-unique visual DNMS task using novel barcode stimuli. The event-related design enabled the identification of activity during the different phases of the task (encoding, retention, and retrieval). Several brain regions identified by monkey studies as being important for successful DNMS performance showed selective activity during the different phases, including the mediodorsal thalamic nucleus (encoding), ventrolateral prefrontal cortex (retention), and perirhinal cortex (retrieval). Regions showing sustained activity within trials included the ventromedial and dorsal prefrontal cortices and occipital cortex. The present study shows the utility of investigating performance on tasks derived from animal models to assist in the identification of brain regions involved in human recognition memory.
Resumo:
Two experiments tested predictions from a theory in which processing load depends on relational complexity (RC), the number of variables related in a single decision. Tasks from six domains (transitivity, hierarchical classification, class inclusion, cardinality, relative-clause sentence comprehension, and hypothesis testing) were administered to children aged 3-8 years. Complexity analyses indicated that the domains entailed ternary relations (three variables). Simpler binary-relation (two variables) items were included for each domain. Thus RC was manipulated with other factors tightly controlled. Results indicated that (i) ternary-relation items were more difficult than comparable binary-relation items, (ii) the RC manipulation was sensitive to age-related changes, (iii) ternary relations were processed at a median age of 5 years, (iv) cross-task correlations were positive, with all tasks loading on a single factor (RC), (v) RC factor scores accounted for 80% (88%) of age-related variance in fluid intelligence (compositionality of sets), (vi) binary- and ternary-relation items formed separate complexity classes, and (vii) the RC approach to defining cognitive complexity is applicable to different content domains. (C) 2002 Elsevier Science (USA). All rights reserved.
Resumo:
Arguably the most complex conical functions are seated in human cognition, the how and why of which have been debated for centuries by theologians, philosophers and scientists alike. In his best-selling book, An Astonishing Hypothesis: A Scientific Search for the Soul, Francis Crick refined the view that these qualities are determined solely by cortical cells and circuitry. Put simply, cognition is nothing more, or less, than a biological function. Accepting this to be the case, it should be possible to identify the mechanisms that subserve cognitive processing. Since the pioneering studies of Lorent de No and Hebb, and the more recent studies of Fuster, Miller and Goldman-Rakic, to mention but a few, much attention has been focused on the role of persistent neural activity in cognitive processes. Application of modern technologies and modelling techniques has led to new hypotheses about the mechanisms of persistent activity. Here I focus on how regional variations in the pyramidal cell phenotype may determine the complexity of cortical circuitry and, in turn, influence neural activity. Data obtained from thousands of individually injected pyramidal cells in sensory, motor, association and executive cortex reveal marked differences in the numbers of putative excitatory inputs received by these cells. Pyramidal cells in prefrontal cortex have, on average, up to 23 times more dendritic spines than those in the primary visual area. I propose that without these specializations in the structure of pyramidal cells, and the circuits they form, human cognitive processing would not have evolved to its present state. I also present data from both New World and Old World monkeys that show varying degrees of complexity in the pyramidal cell phenotype in their prefrontal cortices, suggesting that cortical circuitry and, thus, cognitive styles are evolving independently in different species.
Resumo:
Este estudo pretende (1) encontrar a prevalência da Perturbação do Desenvolvimento da Coordenação (PDC) em crianças com Perturbação de Hiperatividades e Défice de Atenção (PHDA); (2) analisar qual a prevalência de défices de memória de trabalho verbal e não-verbal, em crianças com PHDA e comparar o desempenho entre as crianças que só apresentam PHDA e aquelas que apresentam também PDC; (3) verificar se a ocorrência de PDC é agravada, de acordo com a presença ou ausência de alterações de memória de trabalho e se estas podem ser consideradas fatores de risco ou de proteção para a manifestação de PDC, enquanto comorbilidade de PHDA. Foram selecionadas 37 crianças com diagnóstico de PHDA, com idades compreendidas entre os 7 e os 14 anos. A componente motora foi avaliado com a versão curta do Bruininks-Oseretsky Test of Motor Proficiency (BOTMP) e o Questionário de Perturbação do Desenvolvimento da Coordenação 2007 (DCDQ’07); a memória de trabalho foi avaliada através da Figura Complexa de Rey, Trail Making Test - parte B e Memória de Dígitos – sentido inverso. Para determinar o impacto da memória de trabalho na componente motora, recorreu-se a uma regressão logística. Encontrou-se uma prevalência de PDC de 51% e de défices ao nível da memória de trabalho verbal e não-verbal de 60% e 80%, respetivamente, para a amostra total de crianças com PHDA. A terapêutica farmacológica para a PHDA revelou-se fator protetor para a manifestação de PDC, principalmente quando a primeira se encontra associada com o nascimento de termo. Um mau desempenho no teste Memória de Dígitos – sentido inverso é fator de risco para a manifestação de PDC, em crianças com PHDA. Este estudo permitiu verificar que crianças com PHDA+PDC apresentam défices motores genuínos, característicos de manifestação de PDC. Parecem também existir relações bastante complexas entre a memória de trabalho e os mecanismos de controlo motor na PHDA, sendo que estes podem ser distintos quando está presente uma comorbilidade de PDC.
Resumo:
Dissertation presented to obtain the Ph.D degree in Biology, Neuroscience
Resumo:
Dissertation presented to obtain the Ph.D degree in Biology
Resumo:
Previous research demonstrated that the sequence of informational cues and the level of distraction have an impact on the judgment of a product’s quality. This study investigates the influence of the force behind the processing of these cues, working memory (WM). The results indicate that without distraction, consumers with low and high WM capacity (WMC) equally base their product evaluation on the first sequential cue. In the presence of a distractor, however, low WM individuals are no longer able to recall the initial cue, and thus derive their product judgment from the final cue. Moreover, evidence of intercultural differences in the perception of product related cues, and their aptitude for signaling a favorable product quality is provided.
Resumo:
It is common to find in experimental data persistent oscillations in the aggregate outcomes and high levels of heterogeneity in individual behavior. Furthermore, it is not unusual to find significant deviations from aggregate Nash equilibrium predictions. In this paper, we employ an evolutionary model with boundedly rational agents to explain these findings. We use data from common property resource experiments (Casari and Plott, 2003). Instead of positing individual-specific utility functions, we model decision makers as selfish and identical. Agent interaction is simulated using an individual learning genetic algorithm, where agents have constraints in their working memory, a limited ability to maximize, and experiment with new strategies. We show that the model replicates most of the patterns that can be found in common property resource experiments.
Resumo:
Estudi elaborat a partir d’una estada a la University of Wales, Bangor, Regne Unit entre setembre i desembre del 2006. Els sons distractors augmenten el temps de reacció i el nombre de respostes incorrectes en una tasca de classificació visual, demostrant que hi ha distracció conductual durant la realització de la tasca visual. L’enregistrament concomitant de potencials evocats durant la distracció mostra un patró neuroelèctric característic, el potencial de distracció, que es caracteritza per una ona trifàsica. Darrerament, s’ha demostrat que factors “des de dalt” associats al muntatge experimental tindrien una gran influència en els efectes que els estímuls distractors tindrien en la tasca. Estudis recents mostrarien que aquesta resposta d’atenció exògena es pot modular per la càrrega en memòria de treball, reduint-ne la distracció amb la càrrega, fet que contradiu altres dades que mostraven l’efecte oposat. L’objectiu d’aquest estudi ha estat investigar en quines condicions la càrrega en memòria de treball pot exercir un efecte modulador en les respostes conductuals i cerebrals als sons novedosos distractors, i establir la dinàmica espacio-temporal d’aquesta modulació.