919 resultados para Image-based mesh generation
Resumo:
Some machine learning methods do not exploit contextual information in the process of discovering, describing and recognizing patterns. However, spatial/temporal neighboring samples are likely to have same behavior. Here, we propose an approach which unifies a supervised learning algorithm - namely Optimum-Path Forest - together with a Markov Random Field in order to build a prior model holding a spatial smoothness assumption, which takes into account the contextual information for classification purposes. We show its robustness for brain tissue classification over some images of the well-known dataset IBSR. © 2013 Springer-Verlag.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Image categorization by means of bag of visual words has received increasing attention by the image processing and vision communities in the last years. In these approaches, each image is represented by invariant points of interest which are mapped to a Hilbert Space representing a visual dictionary which aims at comprising the most discriminative features in a set of images. Notwithstanding, the main problem of such approaches is to find a compact and representative dictionary. Finding such representative dictionary automatically with no user intervention is an even more difficult task. In this paper, we propose a method to automatically find such dictionary by employing a recent developed graph-based clustering algorithm called Optimum-Path Forest, which does not make any assumption about the visual dictionary's size and is more efficient and effective than the state-of-the-art techniques used for dictionary generation.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
In this letter, a semiautomatic method for road extraction in object space is proposed that combines a stereoscopic pair of low-resolution aerial images with a digital terrain model (DTM) structured as a triangulated irregular network (TIN). First, we formulate an objective function in the object space to allow the modeling of roads in 3-D. In this model, the TIN-based DTM allows the search for the optimal polyline to be restricted along a narrow band that is overlaid upon it. Finally, the optimal polyline for each road is obtained by optimizing the objective function using the dynamic programming optimization algorithm. A few seed points need to be supplied by an operator. To evaluate the performance of the proposed method, a set of experiments was designed using two stereoscopic pairs of low-resolution aerial images and a TIN-based DTM with an average resolution of 1 m. The experimental results showed that the proposed method worked properly, even when faced with anomalies along roads, such as obstructions caused by shadows and trees.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
We propose a resource-sharing scheme that supports three kinds of sharing scenarios in a WDM mesh network with path-based protection and sparse OEO regeneration. Several approaches are used to maximize the sharing of wavelength-links and OEO regenerators.
Resumo:
This paper presents an optimum user-steered boundary tracking approach for image segmentation, which simulates the behavior of water flowing through a riverbed. The riverbed approach was devised using the image foresting transform with a never-exploited connectivity function. We analyze its properties in the derived image graphs and discuss its theoretical relation with other popular methods such as live wire and graph cuts. Several experiments show that riverbed can significantly reduce the number of user interactions (anchor points), as compared to live wire for objects with complex shapes. This paper also includes a discussion about how to combine different methods in order to take advantage of their complementary strengths.
Resumo:
This work proposes the development and study of a novel technique lot the generation of fractal descriptors used in texture analysis. The novel descriptors are obtained from a multiscale transform applied to the Fourier technique of fractal dimension calculus. The power spectrum of the Fourier transform of the image is plotted against the frequency in a log-log scale and a multiscale transform is applied to this curve. The obtained values are taken as the fractal descriptors of the image. The validation of the proposal is performed by the use of the descriptors for the classification of a dataset of texture images whose real classes are previously known. The classification precision is compared to other fractal descriptors known in the literature. The results confirm the efficiency of the proposed method. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Programa de doctorado: Ingeniería de Telecomunicación Avanzada
Resumo:
During the last few years, several methods have been proposed in order to study and to evaluate characteristic properties of the human skin by using non-invasive approaches. Mostly, these methods cover aspects related to either dermatology, to analyze skin physiology and to evaluate the effectiveness of medical treatments in skin diseases, or dermocosmetics and cosmetic science to evaluate, for example, the effectiveness of anti-aging treatments. To these purposes a routine approach must be followed. Although very accurate and high resolution measurements can be achieved by using conventional methods, such as optical or mechanical profilometry for example, their use is quite limited primarily to the high cost of the instrumentation required, which in turn is usually cumbersome, highlighting some of the limitations for a routine based analysis. This thesis aims to investigate the feasibility of a noninvasive skin characterization system based on the analysis of capacitive images of the skin surface. The system relies on a CMOS portable capacitive device which gives 50 micron/pixel resolution capacitance map of the skin micro-relief. In order to extract characteristic features of the skin topography, image analysis techniques, such as watershed segmentation and wavelet analysis, have been used to detect the main structures of interest: wrinkles and plateau of the typical micro-relief pattern. In order to validate the method, the features extracted from a dataset of skin capacitive images acquired during dermatological examinations of a healthy group of volunteers have been compared with the age of the subjects involved, showing good correlation with the skin ageing effect. Detailed analysis of the output of the capacitive sensor compared with optical profilometry of silicone replica of the same skin area has revealed potentiality and some limitations of this technology. Also, applications to follow-up studies, as needed to objectively evaluate the effectiveness of treatments in a routine manner, are discussed.
Resumo:
[EN]We present a new method, based on the idea of the meccano method and a novel T-mesh optimization procedure, to construct a T-spline parameterization of 2D geometries for the application of isogeometric analysis. The proposed method only demands a boundary representation of the geometry as input data. The algorithm obtains, as a result, high quality parametric transformation between 2D objects and the parametric domain, the unit square. First, we define a parametric mapping between the input boundary of the object and the boundary of the parametric domain. Then, we build a T-mesh adapted to the geometric singularities of the domain in order to preserve the features of the object boundary with a desired tolerance…
Resumo:
La radioterapia guidata da immagini (IGRT), grazie alle ripetute verifiche della posizione del paziente e della localizzazione del volume bersaglio, si è recentemente affermata come nuovo paradigma nella radioterapia, avendo migliorato radicalmente l’accuratezza nella somministrazione di dose a scopo terapeutico. Una promettente tecnica nel campo dell’IGRT è rappresentata dalla tomografia computerizzata a fascio conico (CBCT). La CBCT a kilovoltaggio, consente di fornire un’accurata mappatura tridimensionale dell’anatomia del paziente, in fase di pianificazione del trattamento e a ogni frazione del medisimo. Tuttavia, la dose da imaging attribuibile alle ripetute scansioni è diventata, negli ultimi anni, oggetto di una crescente preoccupazione nel contesto clinico. Lo scopo di questo lavoro è di valutare quantitativamente la dose addizionale somministrata da CBCT a kilovoltaggio, con riferimento a tre tipici protocolli di scansione per Varian OnBoard Imaging Systems (OBI, Palo Alto, California). A questo scopo sono state condotte simulazioni con codici Monte Carlo per il calcolo della dose, utilizzando il pacchetto gCTD, sviluppato sull’architettura della scheda grafica. L’utilizzo della GPU per sistemi server di calcolo ha permesso di raggiungere alte efficienze computazionali, accelerando le simulazioni Monte Carlo fino a raggiungere tempi di calcolo di ~1 min per un caso tipico. Inizialmente sono state condotte misure sperimentali di dose su un fantoccio d’acqua. I parametri necessari per la modellazione della sorgente di raggi X nel codice gCTD sono stati ottenuti attraverso un processo di validazione del codice al fine di accordare i valori di dose simulati in acqua con le misure nel fantoccio. Lo studio si concentra su cinquanta pazienti sottoposti a cicli di radioterapia a intensità modulata (IMRT). Venticinque pazienti con tumore al cervello sono utilizzati per studiare la dose nel protocollo standard-dose head e venticinque pazienti con tumore alla prostata sono selezionati per studiare la dose nei protocolli pelvis e pelvis spotlight. La dose media a ogni organo è calcolata. La dose media al 2% dei voxels con i valori più alti di dose è inoltre computata per ogni organo, al fine di caratterizzare l’omogeneità spaziale della distribuzione.
Resumo:
In chronic myeloid leukemia and Philadelphia-positive acute lymphoblastic leukemia patients resistant to tyrosine kinase inhibitors (TKIs), BCR-ABL kinase domain mutation status is an essential component of the therapeutic decision algorithm. The recent development of Ultra-Deep Sequencing approach (UDS) has opened the way to a more accurate characterization of the mutant clones surviving TKIs conjugating assay sensitivity and throughput. We decided to set-up and validated an UDS-based for BCR-ABL KD mutation screening in order to i) resolve qualitatively and quantitatively the complexity and the clonal structure of mutated populations surviving TKIs, ii) study the dynamic of expansion of mutated clones in relation to TKIs therapy, iii) assess whether UDS may allow more sensitive detection of emerging clones, harboring critical 2GTKIs-resistant mutations predicting for an impending relapse, earlier than SS. UDS was performed on a Roche GS Junior instrument, according to an amplicon sequencing design and protocol set up and validated in the framework of the IRON-II (Interlaboratory Robustness of Next-Generation Sequencing) International consortium.Samples from CML and Ph+ ALL patients who had developed resistance to one or multiple TKIs and collected at regular time-points during treatment were selected for this study. Our results indicate the technical feasibility, accuracy and robustness of our UDS-based BCR-ABL KD mutation screening approach. UDS was found to provide a more accurate picture of BCR-ABL KD mutation status, both in terms of presence/absence of mutations and in terms of clonal complexity and showed that BCR-ABL KD mutations detected by SS are only the “tip of iceberg”. In addition UDS may reliably pick 2GTKIs-resistant mutations earlier than SS in a significantly greater proportion of patients.The enhanced sensitivity as well as the possibility to identify low level mutations point the UDS-based approach as an ideal alternative to conventional sequencing for BCR-ABL KD mutation screening in TKIs-resistant Ph+ leukemia patients
Resumo:
We propose a new and clinically oriented approach to perform atlas-based segmentation of brain tumor images. A mesh-free method is used to model tumor-induced soft tissue deformations in a healthy brain atlas image with subsequent registration of the modified atlas to a pathologic patient image. The atlas is seeded with a tumor position prior and tumor growth simulating the tumor mass effect is performed with the aim of improving the registration accuracy in case of patients with space-occupying lesions. We perform tests on 2D axial slices of five different patient data sets and show that the approach gives good results for the segmentation of white matter, grey matter, cerebrospinal fluid and the tumor.