929 resultados para ISO 9001 Standard.
Resumo:
El presente Trabajo fin Fin de Máster, versa sobre una caracterización preliminar del comportamiento de un robot de tipo industrial, configurado por 4 eslabones y 4 grados de libertad, y sometido a fuerzas de mecanizado en su extremo. El entorno de trabajo planteado es el de plantas de fabricación de piezas de aleaciones de aluminio para automoción. Este tipo de componentes parte de un primer proceso de fundición que saca la pieza en bruto. Para series medias y altas, en función de las propiedades mecánicas y plásticas requeridas y los costes de producción, la inyección a alta presión (HPDC) y la fundición a baja presión (LPC) son las dos tecnologías más usadas en esta primera fase. Para inyección a alta presión, las aleaciones de aluminio más empleadas son, en designación simbólica según norma EN 1706 (entre paréntesis su designación numérica); EN AC AlSi9Cu3(Fe) (EN AC 46000) , EN AC AlSi9Cu3(Fe)(Zn) (EN AC 46500), y EN AC AlSi12Cu1(Fe) (EN AC 47100). Para baja presión, EN AC AlSi7Mg0,3 (EN AC 42100). En los 3 primeros casos, los límites de Silicio permitidos pueden superan el 10%. En el cuarto caso, es inferior al 10% por lo que, a los efectos de ser sometidas a mecanizados, las piezas fabricadas en aleaciones con Si superior al 10%, se puede considerar que son equivalentes, diferenciándolas de la cuarta. Las tolerancias geométricas y dimensionales conseguibles directamente de fundición, recogidas en normas como ISO 8062 o DIN 1688-1, establecen límites para este proceso. Fuera de esos límites, las garantías en conseguir producciones con los objetivos de ppms aceptados en la actualidad por el mercado, obligan a ir a fases posteriores de mecanizado. Aquellas geometrías que, funcionalmente, necesitan disponer de unas tolerancias geométricas y/o dimensionales definidas acorde a ISO 1101, y no capaces por este proceso inicial de moldeado a presión, deben ser procesadas en una fase posterior en células de mecanizado. En este caso, las tolerancias alcanzables para procesos de arranque de viruta se recogen en normas como ISO 2768. Las células de mecanizado se componen, por lo general, de varios centros de control numérico interrelacionados y comunicados entre sí por robots que manipulan las piezas en proceso de uno a otro. Dichos robots, disponen en su extremo de una pinza utillada para poder coger y soltar las piezas en los útiles de mecanizado, las mesas de intercambio para cambiar la pieza de posición o en utillajes de equipos de medición y prueba, o en cintas de entrada o salida. La repetibilidad es alta, de centésimas incluso, definida según norma ISO 9283. El problema es que, estos rangos de repetibilidad sólo se garantizan si no se hacen esfuerzos o éstos son despreciables (caso de mover piezas). Aunque las inercias de mover piezas a altas velocidades hacen que la trayectoria intermedia tenga poca precisión, al inicio y al final (al coger y dejar pieza, p.e.) se hacen a velocidades relativamente bajas que hacen que el efecto de las fuerzas de inercia sean menores y que permiten garantizar la repetibilidad anteriormente indicada. No ocurre así si se quitara la garra y se intercambia con un cabezal motorizado con una herramienta como broca, mandrino, plato de cuchillas, fresas frontales o tangenciales… Las fuerzas ejercidas de mecanizado generarían unos pares en las uniones tan grandes y tan variables que el control del robot no sería capaz de responder (o no está preparado, en un principio) y generaría una desviación en la trayectoria, realizada a baja velocidad, que desencadenaría en un error de posición (ver norma ISO 5458) no asumible para la funcionalidad deseada. Se podría llegar al caso de que la tolerancia alcanzada por un pretendido proceso más exacto diera una dimensión peor que la que daría el proceso de fundición, en principio con mayor variabilidad dimensional en proceso (y por ende con mayor intervalo de tolerancia garantizable). De hecho, en los CNCs, la precisión es muy elevada, (pudiéndose despreciar en la mayoría de los casos) y no es la responsable de, por ejemplo la tolerancia de posición al taladrar un agujero. Factores como, temperatura de la sala y de la pieza, calidad constructiva de los utillajes y rigidez en el amarre, error en el giro de mesas y de colocación de pieza, si lleva agujeros previos o no, si la herramienta está bien equilibrada y el cono es el adecuado para el tipo de mecanizado… influyen más. Es interesante que, un elemento no específico tan común en una planta industrial, en el entorno anteriormente descrito, como es un robot, el cual no sería necesario añadir por disponer de él ya (y por lo tanto la inversión sería muy pequeña), puede mejorar la cadena de valor disminuyendo el costo de fabricación. Y si se pudiera conjugar que ese robot destinado a tareas de manipulación, en los muchos tiempos de espera que va a disfrutar mientras el CNC arranca viruta, pudiese coger un cabezal y apoyar ese mecanizado; sería doblemente interesante. Por lo tanto, se antoja sugestivo poder conocer su comportamiento e intentar explicar qué sería necesario para llevar esto a cabo, motivo de este trabajo. La arquitectura de robot seleccionada es de tipo SCARA. La búsqueda de un robot cómodo de modelar y de analizar cinemática y dinámicamente, sin limitaciones relevantes en la multifuncionalidad de trabajos solicitados, ha llevado a esta elección, frente a otras arquitecturas como por ejemplo los robots antropomórficos de 6 grados de libertad, muy populares a nivel industrial. Este robot dispone de 3 uniones, de las cuales 2 son de tipo par de revolución (1 grado de libertad cada una) y la tercera es de tipo corredera o par cilíndrico (2 grados de libertad). La primera unión, de tipo par de revolución, sirve para unir el suelo (considerado como eslabón número 1) con el eslabón número 2. La segunda unión, también de ese tipo, une el eslabón número 2 con el eslabón número 3. Estos 2 brazos, pueden describir un movimiento horizontal, en el plano X-Y. El tercer eslabón, está unido al eslabón número 4 por la unión de tipo corredera. El movimiento que puede describir es paralelo al eje Z. El robot es de 4 grados de libertad (4 motores). En relación a los posibles trabajos que puede realizar este tipo de robot, su versatilidad abarca tanto operaciones típicas de manipulación como operaciones de arranque de viruta. Uno de los mecanizados más usuales es el taladrado, por lo cual se elige éste para su modelización y análisis. Dentro del taladrado se elegirá para acotar las fuerzas, taladrado en macizo con broca de diámetro 9 mm. El robot se ha considerado por el momento que tenga comportamiento de sólido rígido, por ser el mayor efecto esperado el de los pares en las uniones. Para modelar el robot se utiliza el método de los sistemas multicuerpos. Dentro de este método existen diversos tipos de formulaciones (p.e. Denavit-Hartenberg). D-H genera una cantidad muy grande de ecuaciones e incógnitas. Esas incógnitas son de difícil comprensión y, para cada posición, hay que detenerse a pensar qué significado tienen. Se ha optado por la formulación de coordenadas naturales. Este sistema utiliza puntos y vectores unitarios para definir la posición de los distintos cuerpos, y permite compartir, cuando es posible y se quiere, para definir los pares cinemáticos y reducir al mismo tiempo el número de variables. Las incógnitas son intuitivas, las ecuaciones de restricción muy sencillas y se reduce considerablemente el número de ecuaciones e incógnitas. Sin embargo, las coordenadas naturales “puras” tienen 2 problemas. El primero, que 2 elementos con un ángulo de 0 o 180 grados, dan lugar a puntos singulares que pueden crear problemas en las ecuaciones de restricción y por lo tanto han de evitarse. El segundo, que tampoco inciden directamente sobre la definición o el origen de los movimientos. Por lo tanto, es muy conveniente complementar esta formulación con ángulos y distancias (coordenadas relativas). Esto da lugar a las coordenadas naturales mixtas, que es la formulación final elegida para este TFM. Las coordenadas naturales mixtas no tienen el problema de los puntos singulares. Y la ventaja más importante reside en su utilidad a la hora de aplicar fuerzas motrices, momentos o evaluar errores. Al incidir sobre la incógnita origen (ángulos o distancias) controla los motores de manera directa. El algoritmo, la simulación y la obtención de resultados se ha programado mediante Matlab. Para realizar el modelo en coordenadas naturales mixtas, es preciso modelar en 2 pasos el robot a estudio. El primer modelo se basa en coordenadas naturales. Para su validación, se plantea una trayectoria definida y se analiza cinemáticamente si el robot satisface el movimiento solicitado, manteniendo su integridad como sistema multicuerpo. Se cuantifican los puntos (en este caso inicial y final) que configuran el robot. Al tratarse de sólidos rígidos, cada eslabón queda definido por sus respectivos puntos inicial y final (que son los más interesantes para la cinemática y la dinámica) y por un vector unitario no colineal a esos 2 puntos. Los vectores unitarios se colocan en los lugares en los que se tenga un eje de rotación o cuando se desee obtener información de un ángulo. No son necesarios vectores unitarios para medir distancias. Tampoco tienen por qué coincidir los grados de libertad con el número de vectores unitarios. Las longitudes de cada eslabón quedan definidas como constantes geométricas. Se establecen las restricciones que definen la naturaleza del robot y las relaciones entre los diferentes elementos y su entorno. La trayectoria se genera por una nube de puntos continua, definidos en coordenadas independientes. Cada conjunto de coordenadas independientes define, en un instante concreto, una posición y postura de robot determinada. Para conocerla, es necesario saber qué coordenadas dependientes hay en ese instante, y se obtienen resolviendo por el método de Newton-Rhapson las ecuaciones de restricción en función de las coordenadas independientes. El motivo de hacerlo así es porque las coordenadas dependientes deben satisfacer las restricciones, cosa que no ocurre con las coordenadas independientes. Cuando la validez del modelo se ha probado (primera validación), se pasa al modelo 2. El modelo número 2, incorpora a las coordenadas naturales del modelo número 1, las coordenadas relativas en forma de ángulos en los pares de revolución (3 ángulos; ϕ1, ϕ 2 y ϕ3) y distancias en los pares prismáticos (1 distancia; s). Estas coordenadas relativas pasan a ser las nuevas coordenadas independientes (sustituyendo a las coordenadas independientes cartesianas del modelo primero, que eran coordenadas naturales). Es necesario revisar si el sistema de vectores unitarios del modelo 1 es suficiente o no. Para este caso concreto, se han necesitado añadir 1 vector unitario adicional con objeto de que los ángulos queden perfectamente determinados con las correspondientes ecuaciones de producto escalar y/o vectorial. Las restricciones habrán de ser incrementadas en, al menos, 4 ecuaciones; una por cada nueva incógnita. La validación del modelo número 2, tiene 2 fases. La primera, al igual que se hizo en el modelo número 1, a través del análisis cinemático del comportamiento con una trayectoria definida. Podrían obtenerse del modelo 2 en este análisis, velocidades y aceleraciones, pero no son necesarios. Tan sólo interesan los movimientos o desplazamientos finitos. Comprobada la coherencia de movimientos (segunda validación), se pasa a analizar cinemáticamente el comportamiento con trayectorias interpoladas. El análisis cinemático con trayectorias interpoladas, trabaja con un número mínimo de 3 puntos máster. En este caso se han elegido 3; punto inicial, punto intermedio y punto final. El número de interpolaciones con el que se actúa es de 50 interpolaciones en cada tramo (cada 2 puntos máster hay un tramo), resultando un total de 100 interpolaciones. El método de interpolación utilizado es el de splines cúbicas con condición de aceleración inicial y final constantes, que genera las coordenadas independientes de los puntos interpolados de cada tramo. Las coordenadas dependientes se obtienen resolviendo las ecuaciones de restricción no lineales con el método de Newton-Rhapson. El método de las splines cúbicas es muy continuo, por lo que si se desea modelar una trayectoria en el que haya al menos 2 movimientos claramente diferenciados, es preciso hacerlo en 2 tramos y unirlos posteriormente. Sería el caso en el que alguno de los motores se desee expresamente que esté parado durante el primer movimiento y otro distinto lo esté durante el segundo movimiento (y así sucesivamente). Obtenido el movimiento, se calculan, también mediante fórmulas de diferenciación numérica, las velocidades y aceleraciones independientes. El proceso es análogo al anteriormente explicado, recordando la condición impuesta de que la aceleración en el instante t= 0 y en instante t= final, se ha tomado como 0. Las velocidades y aceleraciones dependientes se calculan resolviendo las correspondientes derivadas de las ecuaciones de restricción. Se comprueba, de nuevo, en una tercera validación del modelo, la coherencia del movimiento interpolado. La dinámica inversa calcula, para un movimiento definido -conocidas la posición, velocidad y la aceleración en cada instante de tiempo-, y conocidas las fuerzas externas que actúan (por ejemplo el peso); qué fuerzas hay que aplicar en los motores (donde hay control) para que se obtenga el citado movimiento. En la dinámica inversa, cada instante del tiempo es independiente de los demás y tiene una posición, una velocidad y una aceleración y unas fuerzas conocidas. En este caso concreto, se desean aplicar, de momento, sólo las fuerzas debidas al peso, aunque se podrían haber incorporado fuerzas de otra naturaleza si se hubiese deseado. Las posiciones, velocidades y aceleraciones, proceden del cálculo cinemático. El efecto inercial de las fuerzas tenidas en cuenta (el peso) es calculado. Como resultado final del análisis dinámico inverso, se obtienen los pares que han de ejercer los cuatro motores para replicar el movimiento prescrito con las fuerzas que estaban actuando. La cuarta validación del modelo consiste en confirmar que el movimiento obtenido por aplicar los pares obtenidos en la dinámica inversa, coinciden con el obtenido en el análisis cinemático (movimiento teórico). Para ello, es necesario acudir a la dinámica directa. La dinámica directa se encarga de calcular el movimiento del robot, resultante de aplicar unos pares en motores y unas fuerzas en el robot. Por lo tanto, el movimiento real resultante, al no haber cambiado ninguna condición de las obtenidas en la dinámica inversa (pares de motor y fuerzas inerciales debidas al peso de los eslabones) ha de ser el mismo al movimiento teórico. Siendo así, se considera que el robot está listo para trabajar. Si se introduce una fuerza exterior de mecanizado no contemplada en la dinámica inversa y se asigna en los motores los mismos pares resultantes de la resolución del problema dinámico inverso, el movimiento real obtenido no es igual al movimiento teórico. El control de lazo cerrado se basa en ir comparando el movimiento real con el deseado e introducir las correcciones necesarias para minimizar o anular las diferencias. Se aplican ganancias en forma de correcciones en posición y/o velocidad para eliminar esas diferencias. Se evalúa el error de posición como la diferencia, en cada punto, entre el movimiento teórico deseado en el análisis cinemático y el movimiento real obtenido para cada fuerza de mecanizado y una ganancia concreta. Finalmente, se mapea el error de posición obtenido para cada fuerza de mecanizado y las diferentes ganancias previstas, graficando la mejor precisión que puede dar el robot para cada operación que se le requiere, y en qué condiciones. -------------- This Master´s Thesis deals with a preliminary characterization of the behaviour for an industrial robot, configured with 4 elements and 4 degrees of freedoms, and subjected to machining forces at its end. Proposed working conditions are those typical from manufacturing plants with aluminium alloys for automotive industry. This type of components comes from a first casting process that produces rough parts. For medium and high volumes, high pressure die casting (HPDC) and low pressure die casting (LPC) are the most used technologies in this first phase. For high pressure die casting processes, most used aluminium alloys are, in simbolic designation according EN 1706 standard (between brackets, its numerical designation); EN AC AlSi9Cu3(Fe) (EN AC 46000) , EN AC AlSi9Cu3(Fe)(Zn) (EN AC 46500), y EN AC AlSi12Cu1(Fe) (EN AC 47100). For low pressure, EN AC AlSi7Mg0,3 (EN AC 42100). For the 3 first alloys, Si allowed limits can exceed 10% content. Fourth alloy has admisible limits under 10% Si. That means, from the point of view of machining, that components made of alloys with Si content above 10% can be considered as equivalent, and the fourth one must be studied separately. Geometrical and dimensional tolerances directly achievables from casting, gathered in standards such as ISO 8062 or DIN 1688-1, establish a limit for this process. Out from those limits, guarantees to achieve batches with objetive ppms currently accepted by market, force to go to subsequent machining process. Those geometries that functionally require a geometrical and/or dimensional tolerance defined according ISO 1101, not capable with initial moulding process, must be obtained afterwards in a machining phase with machining cells. In this case, tolerances achievables with cutting processes are gathered in standards such as ISO 2768. In general terms, machining cells contain several CNCs that they are interrelated and connected by robots that handle parts in process among them. Those robots have at their end a gripper in order to take/remove parts in machining fixtures, in interchange tables to modify position of part, in measurement and control tooling devices, or in entrance/exit conveyors. Repeatibility for robot is tight, even few hundredths of mm, defined according ISO 9283. Problem is like this; those repeatibilty ranks are only guaranteed when there are no stresses or they are not significant (f.e. due to only movement of parts). Although inertias due to moving parts at a high speed make that intermediate paths have little accuracy, at the beginning and at the end of trajectories (f.e, when picking part or leaving it) movement is made with very slow speeds that make lower the effect of inertias forces and allow to achieve repeatibility before mentioned. It does not happens the same if gripper is removed and it is exchanged by an spindle with a machining tool such as a drilling tool, a pcd boring tool, a face or a tangential milling cutter… Forces due to machining would create such big and variable torques in joints that control from the robot would not be able to react (or it is not prepared in principle) and would produce a deviation in working trajectory, made at a low speed, that would trigger a position error (see ISO 5458 standard) not assumable for requested function. Then it could be possible that tolerance achieved by a more exact expected process would turn out into a worst dimension than the one that could be achieved with casting process, in principle with a larger dimensional variability in process (and hence with a larger tolerance range reachable). As a matter of fact, accuracy is very tight in CNC, (its influence can be ignored in most cases) and it is not the responsible of, for example position tolerance when drilling a hole. Factors as, room and part temperature, manufacturing quality of machining fixtures, stiffness at clamping system, rotating error in 4th axis and part positioning error, if there are previous holes, if machining tool is properly balanced, if shank is suitable for that machining type… have more influence. It is interesting to know that, a non specific element as common, at a manufacturing plant in the enviroment above described, as a robot (not needed to be added, therefore with an additional minimum investment), can improve value chain decreasing manufacturing costs. And when it would be possible to combine that the robot dedicated to handling works could support CNCs´ works in its many waiting time while CNCs cut, and could take an spindle and help to cut; it would be double interesting. So according to all this, it would be interesting to be able to know its behaviour and try to explain what would be necessary to make this possible, reason of this work. Selected robot architecture is SCARA type. The search for a robot easy to be modeled and kinematically and dinamically analyzed, without significant limits in the multifunctionality of requested operations, has lead to this choice. Due to that, other very popular architectures in the industry, f.e. 6 DOFs anthropomorphic robots, have been discarded. This robot has 3 joints, 2 of them are revolute joints (1 DOF each one) and the third one is a cylindrical joint (2 DOFs). The first joint, a revolute one, is used to join floor (body 1) with body 2. The second one, a revolute joint too, joins body 2 with body 3. These 2 bodies can move horizontally in X-Y plane. Body 3 is linked to body 4 with a cylindrical joint. Movement that can be made is paralell to Z axis. The robt has 4 degrees of freedom (4 motors). Regarding potential works that this type of robot can make, its versatility covers either typical handling operations or cutting operations. One of the most common machinings is to drill. That is the reason why it has been chosen for the model and analysis. Within drilling, in order to enclose spectrum force, a typical solid drilling with 9 mm diameter. The robot is considered, at the moment, to have a behaviour as rigid body, as biggest expected influence is the one due to torques at joints. In order to modelize robot, it is used multibodies system method. There are under this heading different sorts of formulations (f.e. Denavit-Hartenberg). D-H creates a great amount of equations and unknown quantities. Those unknown quatities are of a difficult understanding and, for each position, one must stop to think about which meaning they have. The choice made is therefore one of formulation in natural coordinates. This system uses points and unit vectors to define position of each different elements, and allow to share, when it is possible and wished, to define kinematic torques and reduce number of variables at the same time. Unknown quantities are intuitive, constrain equations are easy and number of equations and variables are strongly reduced. However, “pure” natural coordinates suffer 2 problems. The first one is that 2 elements with an angle of 0° or 180°, give rise to singular positions that can create problems in constrain equations and therefore they must be avoided. The second problem is that they do not work directly over the definition or the origin of movements. Given that, it is highly recommended to complement this formulation with angles and distances (relative coordinates). This leads to mixed natural coordinates, and they are the final formulation chosen for this MTh. Mixed natural coordinates have not the problem of singular positions. And the most important advantage lies in their usefulness when applying driving forces, torques or evaluating errors. As they influence directly over origin variable (angles or distances), they control motors directly. The algorithm, simulation and obtaining of results has been programmed with Matlab. To design the model in mixed natural coordinates, it is necessary to model the robot to be studied in 2 steps. The first model is based in natural coordinates. To validate it, it is raised a defined trajectory and it is kinematically analyzed if robot fulfils requested movement, keeping its integrity as multibody system. The points (in this case starting and ending points) that configure the robot are quantified. As the elements are considered as rigid bodies, each of them is defined by its respectively starting and ending point (those points are the most interesting ones from the point of view of kinematics and dynamics) and by a non-colinear unit vector to those points. Unit vectors are placed where there is a rotating axis or when it is needed information of an angle. Unit vectors are not needed to measure distances. Neither DOFs must coincide with the number of unit vectors. Lengths of each arm are defined as geometrical constants. The constrains that define the nature of the robot and relationships among different elements and its enviroment are set. Path is generated by a cloud of continuous points, defined in independent coordinates. Each group of independent coordinates define, in an specific instant, a defined position and posture for the robot. In order to know it, it is needed to know which dependent coordinates there are in that instant, and they are obtained solving the constraint equations with Newton-Rhapson method according to independent coordinates. The reason to make it like this is because dependent coordinates must meet constraints, and this is not the case with independent coordinates. When suitability of model is checked (first approval), it is given next step to model 2. Model 2 adds to natural coordinates from model 1, the relative coordinates in the shape of angles in revoluting torques (3 angles; ϕ1, ϕ 2 and ϕ3) and distances in prismatic torques (1 distance; s). These relative coordinates become the new independent coordinates (replacing to cartesian independent coordinates from model 1, that they were natural coordinates). It is needed to review if unit vector system from model 1 is enough or not . For this specific case, it was necessary to add 1 additional unit vector to define perfectly angles with their related equations of dot and/or cross product. Constrains must be increased in, at least, 4 equations; one per each new variable. The approval of model 2 has two phases. The first one, same as made with model 1, through kinematic analysis of behaviour with a defined path. During this analysis, it could be obtained from model 2, velocities and accelerations, but they are not needed. They are only interesting movements and finite displacements. Once that the consistence of movements has been checked (second approval), it comes when the behaviour with interpolated trajectories must be kinematically analyzed. Kinematic analysis with interpolated trajectories work with a minimum number of 3 master points. In this case, 3 points have been chosen; starting point, middle point and ending point. The number of interpolations has been of 50 ones in each strecht (each 2 master points there is an strecht), turning into a total of 100 interpolations. The interpolation method used is the cubic splines one with condition of constant acceleration both at the starting and at the ending point. This method creates the independent coordinates of interpolated points of each strecht. The dependent coordinates are achieved solving the non-linear constrain equations with Newton-Rhapson method. The method of cubic splines is very continuous, therefore when it is needed to design a trajectory in which there are at least 2 movements clearly differents, it is required to make it in 2 steps and join them later. That would be the case when any of the motors would keep stopped during the first movement, and another different motor would remain stopped during the second movement (and so on). Once that movement is obtained, they are calculated, also with numerical differenciation formulas, the independent velocities and accelerations. This process is analogous to the one before explained, reminding condition that acceleration when t=0 and t=end are 0. Dependent velocities and accelerations are calculated solving related derivatives of constrain equations. In a third approval of the model it is checked, again, consistence of interpolated movement. Inverse dynamics calculates, for a defined movement –knowing position, velocity and acceleration in each instant of time-, and knowing external forces that act (f.e. weights); which forces must be applied in motors (where there is control) in order to obtain requested movement. In inverse dynamics, each instant of time is independent of the others and it has a position, a velocity, an acceleration and known forces. In this specific case, it is intended to apply, at the moment, only forces due to the weight, though forces of another nature could have been added if it would have been preferred. The positions, velocities and accelerations, come from kinematic calculation. The inertial effect of forces taken into account (weight) is calculated. As final result of the inverse dynamic analysis, the are obtained torques that the 4 motors must apply to repeat requested movement with the forces that were acting. The fourth approval of the model consists on confirming that the achieved movement due to the use of the torques obtained in the inverse dynamics, are in accordance with movements from kinematic analysis (theoretical movement). For this, it is necessary to work with direct dynamics. Direct dynamic is in charge of calculating the movements of robot that results from applying torques at motors and forces at the robot. Therefore, the resultant real movement, as there was no change in any condition of the ones obtained at the inverse dynamics (motor torques and inertial forces due to weight of elements) must be the same than theoretical movement. When these results are achieved, it is considered that robot is ready to work. When a machining external force is introduced and it was not taken into account before during the inverse dynamics, and torques at motors considered are the ones of the inverse dynamics, the real movement obtained is not the same than the theoretical movement. Closed loop control is based on comparing real movement with expected movement and introducing required corrrections to minimize or cancel differences. They are applied gains in the way of corrections for position and/or tolerance to remove those differences. Position error is evaluated as the difference, in each point, between theoretical movemment (calculated in the kinematic analysis) and the real movement achieved for each machining force and for an specific gain. Finally, the position error obtained for each machining force and gains are mapped, giving a chart with the best accuracy that the robot can give for each operation that has been requested and which conditions must be provided.
Resumo:
Este proyecto está dividido en dos partes, una de ellas dedicada al estudio del sistema de adquisición NetdB y su aplicación a prácticas de Acústica Arquitectónica y la otra dedicada a la evaluación de la herramienta OneNote 2010 y su aplicación al proceso enseñanza – aprendizaje. Se estructura en cinco secciones bien definidas que se comentan a continuación: La primera sección, fundamentos teóricos, se centrará en explicar los distintos parámetros medidos y su relación con la acústica. Para ello se definirán los conceptos teóricos básicos que ayudarán al seguimiento del proyecto en su totalidad. La segunda sección está dedicada al sistema de adquisición NetdB, y en ella se explican sus características, el conexionado del equipo y la configuración del mismo con el software dBBati. En la tercera sección se describen las medidas realizadas con el sistema de adquisición NetdB, basadas en la normativa nacional e internacional vigente. Estas medidas son: - Medición del tiempo de reverberación en recintos ordinarios, según la Norma UNE-EN ISO 3382-2. - Medición del coeficiente de absorción sonora en cámara reverberante, según la Norma UNE-EN ISO 354. - Medición “in situ” del aislamiento a ruido aéreo, según las normas UNE-EN ISO 140-4 y UNE-EN ISO 717-1. En cada una de las medidas se describe el objetivo, los equipos utilizados, la conexión entre los distintos equipos, el ensayo realizado según la norma correspondiente, los cálculos y resultados obtenidos y las conclusiones finales de la medida. En la cuarta sección se describe la herramienta OneNote 2010, detallándose su estructura, configuración y la evaluación de su aplicación al proceso enseñanza – aprendizaje. Por último, se darán unas conclusiones finales, en las que se recapitularán los resultados de las valoraciones obtenidos durante la realización del proyecto. ABSTRACT. This project is divided into two parts, one of them dealing with the study of NetdB acquisition system and its application on Architectural Acoustics practices and the other dedicated to the evaluation of the OneNote 2010 tool and its application on the teaching-learning process. The structure of the project consists of five clearly defined sections as stated hereunder: 1. Theoretical fundamentals, based on the explanation of the different parameters subject to measurement and their relation to acoustics. To this end, basic theoretical concepts will be clearly defined, which will help the follow-up of the project as a whole. 2. NetdB acquisition system: whereby features will be clearly defined, as well as the equipment connection and its configuration within the dBBati software. 3. Description of the measures carried out on the NetdB acquisition system under current regulations both national and international, being those measures as follows: - Reverberation Time measurement in ordinary premises, according to the UNE-EN ISO 3382-2 standard. - Sound absorption ratio measurement in reverberating chamber, according to the UNE-EN ISO 354 standard. - “In situ” sound proofing air traffic, according to UNE-EN ISO 140-4 and UNE-EN ISO 717-1 standards. Each of the measures stated above comprises the description of the following issues: its aim, the equipment in use, the connection among different equipment, the test carried out under the corresponding standard, the calculations and results obtained and finally the conclusions reached at. 4. OneNote 2010 tool: full description detailing its structure, configuration as well as the evaluation of its application on the teaching-learning process. Finally, the report will give the final conclusions by means of recapitulating the results of the different assessments obtained along the process.
Resumo:
En este trabajo se persiguen dos objetivos principales. En primer lugar, se analiza el sistema de evaluación formativo utilizado en una asignatura de gestión medioambiental (“Implantación de sistemas de gestión ambiental en empresas y organizaciones turísticas”) y en otra de gestión de la calidad (“Implantación de sistemas de calidad en empresas y organizaciones turísticas”), ambas pertenecientes al Máster Universitario en Dirección y Planificación de Turismo de la Universidad de Alicante. En segundo lugar, se examina el grado de dificultad y utilidad de las actividades de enseñanza-aprendizaje que se desarrollan en estas asignaturas. Para ello, se indica información sobre los contenidos de estas asignaturas. Asimismo, se ha utilizado información recogida a través de un cuestionario al que han respondido los estudiantes de estas asignaturas. El motivo de analizar conjuntamente estas dos asignaturas es el gran número de similitudes y paralelismos que existen entre las mismas, en concreto su énfasis en las ideas de mejora continua y prevención, así como la existencia de requisitos comunes en las normas vinculadas (especialmente entre ISO 9001 e ISO 14001).
Resumo:
El presente trabajo se ha desarrollado conjuntamente con alumnos de la asignatura obligatoria “Gestión Integrada y Seguridad Industrial” del Máster de Ingeniería Química y la asignatura optativa de cuarto curso “Gestión Integrada en la Industria Química” del grado de Ingeniería Química. Se ha diseñado una actividad práctica con el fin de aplicar los conceptos teóricos impartidos en estas asignaturas. Con el reto de cocinar un Mug Cake o “bizcocho en taza” se ha logrado poner en práctica varios de los contenidos teóricos de las asignaturas, especialmente el capítulo 7 de la norma ISO 9001:2008, “Realización del producto”; así como otros conceptos de liderazgo y mejora continua. Los alumnos se dividieron en dos equipos formados por el mismo número de miembros y en los que se mantenía el mismo número de alumnos del grado y del máster. Previamente a la realización del taller los alumnos elaboraron una serie de procedimientos, registros y listados de verificación. La experiencia ha resultado altamente fructífera puesto que los alumnos se han enfrentado al reto de aplicar contenidos teóricos a procesos reales, ha mejorado su motivación e interés por la materia y han desarrollado técnicas de trabajo en equipo y organización personal aumentando su productividad.
Resumo:
The purpose of this paper is to identify the benefits of integrated management systems by comparing them with the benefits obtained through the individual implementation of ISO 9001 and ISO 14001 standards. The methodology used is a literature review based on an electronic search in the Web of Science, ScienceDirect, Scopus and Emerald databases. Findings show that although some benefits are common regardless the system management type, the benefits obtained with integration are greater than considering management systems separately because of the wider scope considered in integration. This is one of the first papers, to the best of our knowledge, to compare benefits from the two management systems standards when implemented separately and when integrated. In addition, some ideas are proposed for consideration in future research on the internalization of management systems and selection effect.
Resumo:
This paper present a study on the behaviour of tabique walls, concerning its fire resistance. This work is based on the experimental analysis of real scale tabique panels. Such walls were made in pine wood with an earth-based mortar finishing. In order to assess the earth-based mortar thickness effect on the fire resistance of the wall, three specimens were tested with three different mortar thicknesses of 15 mm, 10 mm and 5 mm. The earth-based mortar was previously analysed in the laboratory. The wooden structures were constructed based on traditional tabique technique. The experimental models were tested in a fire-resistance furnace, according to the ISO 834 standard fire. Temperatures were recorded using two data acquisition systems (spot measuring and field measuring). Fire resistance of test elements is expressed as the time during which the appropriate criteria have been satisfied so that one can predict the time before collapse, increasing both people and property safety. The obtained results are of great importance as they allow to improve the knowledge on tabique walls behaviour subjected to fire conditions. Two performance criteria were verified: the integrity criteria and the insulation criteria.
Resumo:
A presente dissertação pretende estudar a sensibilidade do sector farmacêutico relativamente à necessidade de certificação dos sistemas de gestão da qualidade, ambiente e SST, uma questão que começa a ter cada vez mais valor nos dias de hoje. A relação cliente-fornecedor na indústria farmacêutica requer uma análise cada vez mais cuidada. Ter fornecedores de qualidade e incentivá-los na busca da melhoria contínua trará reflexos sempre benéficos ao cliente e à sociedade. O processo de certificação de Qualidade, Ambiente e Segurança e Saúde no Trabalho é um dos meios capaz de alcançar esse objetivo. Mas o sector farmacêutico não se rege apenas pelos Laboratórios que produzem os medicamentos, mas também as entidades responsáveis pela sua distribuição, tanto nacional como de exportação, e as entidades que irão receber esses mesmos produtos, ou seja, as entidades hospitalares e as farmácias. Só após atravessarem toda esta longa cadeia de fornecimentos, os diversos medicamentos, chegarão às mãos dos utentes, nas quais serão usufruídos. Deste modo, as várias certificações, de entre as quais, a das Boas Práticas Fabris (BPF), a da Qualidade e Ambiente (ISO 9001:2008 e ISO 14001:2004), e a de Segurança e Saúde no Trabalho (OHSAS 18001:2007 e NP4397:2008), não devem ser vistas, pelas diversas entidades, apenas como um meio de melhorar a sua imagem, mas também, de não degradar os produtos que por elas passam. É neste sentido que emerge a diferença entre Necessidade e Obrigação das várias entidades da indústria farmacêutica. Neste Estudo de Caso pretende-se detalhar a urgência em dar mais ênfase às Certificações existentes, em todos os ramos do setor. Assim, mediante a análise dos resultados obtidos num questionário distribuído às entidades acima referidas, pode-se constatar a posição destas entidades a nível nacional, sobre este mesmo tópico. No entanto, dado que existe um grande número de armazenistas/distribuidores e hospitais, e um número ainda maior de farmácias a nível nacional, constituindo assim uma limitação. Como pesquisa futura poderá ser o estudo por grupo abrangendo uma amostra maior e dedicada apenas às farmácias e hospitais.
Resumo:
Com a elaboração do presente trabalho, pretendeu-se contribuir de forma efetiva para a criação de melhores condições no âmbito da Saúde e Segurança, aos colaboradores de um Laboratório de Analises Biomédicas, através da elaboração de um Manual de Saúde e Segurança. O Manual proposto assenta no pressuposto da sua aplicação ocorrer num Laboratório previamente com certificação de qualidade pela Norma NP EN ISO 9001:2008, uma vez que existem processos comuns à implementação da gestão de ambos os sistemas - o sistema de gestão de Saúde e Segurança e o sistema de Gestão da Qualidade. Ainda no âmbito da gestão da Qualidade e face às necessidades sentidas pelas organizações em reduzir custos de funcionamento, numa perspetiva de melhoria contínua e sem descorar o cumprimento dos requisitos normativos, foi apresentada uma metodologia de calibração interna de pipetas e sistemas de refrigeração, de acordo os requisitos da Norma NP EN ISO 9001:2008 e outros normativos legais, que permite reduzir os custos das organizações. Com este tipo de serviço as entidades certificadas garantem o cumprimento do requisito normativo da Gestão da qualidade, podendo ser auditado com sucesso. Ainda, numa perspetiva de melhoria continua, posteriormente, poderão ser desenvolvidos testes de desgaste ao equipamento, com a ajuda dos seus relatórios anuais.
Resumo:
Atualmente, ferramentas e dados estatísticos são muito utilizados para avaliar as condições perigosas enquanto, por outro lado, as pessoas usam o julgamento para perceber o risco, que tem como base a cultura do risco. A percepção do risco muda conforme o ambiente no qual a pessoa está imersa, e se diferencia conforme a cultura. O objetivo desta pesquisa é conhecer qual o papel dos diversos atores envolvidos na gestão de riscos e como a resiliência ajuda nos eventos indesejáveis. Foram investigados onze eventos indesejáveis, com dez entrevistados em seis organizações, com o objetivo de identificar e analisar como a gestão de risco, a resiliência e a percepção do risco interagem. A análise multifacetada reforçou a importância dos aspectos de resiliência para uma gestão de risco eficaz. A participação dos possíveis envolvidos no evento, desde o contexto da gestão, reforçado pelo controle compartilhado, identificação das habilidades individuais não prescritas, incentivo à cooperação entre esses atores, comunicação eficaz e simplificação dos processos são aspectos integradores a uma gestão de risco. Como oportunidade de investigação futura, a pesquisa reforça a necessidade de analisar aspectos da cultura organizacional abrangendo as ciências sociais: antropologia, sociologia, psicodinâmica do trabalho, sociologia da ética e cultura país como agente consciente e experimentador da realidade.
Resumo:
O presente estudo aborda como temática principal as implicações financeiras que as empresas portuguesas têm com a implementação e posterior certificação do Sistema da Qualidade (SQ) e respetivas Auditorias da Qualidade (AQ). Foi feita uma revisão de literatura sobre a temática do Impacto Financeiro das Auditorias da Qualidade. A literatura disponível sobre este tema é contudo pouco divulgada devido à não publicação pelas empresas dos resultados financeiros que nos interessam para este trabalho. Foi elaborado um questionário e posteriormente enviado a 126 empresas das quais 32 responderam. Esta é considerada a amostra para o nosso estudo. Como principais resultados referentes aos benefícios financeiros destacamos: a) Aumento do volume de negócios; b) Desempenho (redução dos custos); c) Aumento da produtividade da empresa; d) Inovação dos produtos; e) Diminuição do produto não conforme; e/ou f) Aumento do número de clientes. Como principais dificuldades destacam-se, de entre outras: a sobrecarga administrativa; o assegurar a melhoria contínua dos resultados; o colocar os processos de trabalho em conformidade com o documentado; envolver todos na resolução dos problemas e/ou assegurar de que existe a gestão do sistema da qualidade tal como estabelecido. Verificou-se também que a melhoria contínua é praticada nas empresas inquiridas. Dos resultados obtidos destacam-se: a) Implementação de correções de forma a retificar situações não conformes; b) Análise das situações de não conformidade e implementação de ações corretivas de forma a evitar a sua repetição; c) Investigar e compreender as necessidades e as expectativas dos clientes; d) Fomentar a confiança e eliminar o medo e a insegurança; e/ou e) Dar formação os colaboradores sobre métodos e ferramentas da melhoria contínua.
Resumo:
Esta dissertação teve como finalidade estudar as possibilidades de implementar um Sistema Integrado de Gestão - Qualidade, Ambiente e Segurança na Guiné Equatorial. Este estudo seguiu os requisitos das normas ISO 9001, ISO 14001 e OHSAS 18001. Foi efetuado um levantamento de problemas e a sua respetiva investigação no projeto “ Construcción de la autovia de la Nacional Malabo-Luba “, mais concretamente na área industrial. Nesta área, desenvolve-se todo o processo de produção de peças pré-fabricadas de betão para órgãos de drenagem e funcionamento da central de betão. Pretendeu-se analisar os requisitos para assegurar a qualidade do produto, salvaguardando o meio ambiente, a segurança e a saúde de todos os intervenientes. Foram então estudadas as ações mais adequadas à empresa e ao seu processo de produção, para a implementação do sistema integrado de gestão, tendo em consideração as limitações existentes em África.
Resumo:
Ez a műhelytanulmány a 2009-es versenyképesség kutatás során 317 vállalatra kiterjedő kérdőíves felmérés konkrét adataiból emeli ki az ellenőrzéssel, kontrollal összefüggő tényezőket és ezek eredményeit hasonlítja össze a hazai és nemzetközi szakirodalom ide vonatkozó elméleteivel. A kutatási kérdések arra irányulnak, hogy milyen részekből, feladatokból, tevékenységekből tevődnek össze a vezetők ellenőrzési feladatai, azok mikre terjednek ki, és mennyiben tekinthetők fejlettnek a versenyképes vállalatoknál. A műhelytanulmányban konkrétan a kontrolling eszköztár, a belső ill. pénzügyi ellenőrzés és kockázatkezelés, valamint a minőségirányítási sztenderdek, szabványok által megkövetelt ellenőrzési mechanizmusok vizsgálata történik a hazai, 50 főt meghaladó vállalkozások esetében. A műhelytanulmány a klasszikus kutatási jelentések sémájában készült, elméleti felvezetéssel és szakirodalmi áttekintéssel indít, majd második részében a konkrét versenyképesség adatbázis adatainak bemutatása történik a témában, végül összegzés, segítő szószedet és irodalomjegyzék zárja azt. _______ This workpaper is a report of controlmechanisms used by Hungarian companies. The latest stage of the Competitivness Research project started in 2009 during which data were collected from 317 Hungarian companies. Themes of this workpaper are controlmechanism, or controll-framework of the companies and connection between controlmechanism and competitiveness. Main elements of the research are: controlling aspects, internal and financial audits completed by managment including critical risks, audits according to ISO 9001:2008 standards or other standards, and the way these elements support or influence the competitiveness of the companies. The structure of this workpaper follows the common parts of other research reports. It begins with details of the theoretical background and presents main publications of the topic, than goes through several direct analisys and tests regarding the Hungarian competitiveness database of 2009. At the end the of the workpapaper a basic summary can be found with a glossary of explanations, and a bibliography of cited papers and publications.
Resumo:
A felhasználók, a szabványos és törvényi előírások ma már több területen kikényszerítették a kockázatok elemzését és kezelését. A jelenlegi rendszerek alapvető jellemzői, hogy a vállalatokon belüli rendszerek egymástól elkülönülten működnek. Ennek oka az eltérő időpontban, eltérő követelmények, valamint különböző felfogás szerint történt rendszerbevezetés. Az integráció elsősorban vállalati szinten történik, az elemzés szempontját alapvetően az adott funkcionális terület filozófiája határozza meg. Emiatt ritkán kerül sor egy termék vagy folyamat által hordozott összes kockázat módszeres számbavételére. A szabványosítás területén vannak törekvések az integrált szemlélet érvényesítésére. Ez részben már megjelent az ISO 9001 (Minőségirányítási Rendszer [MIR]), az ISO 14001 (Környezetközpontú Irányítási Rendszer [KIR]) és az MSZ 28001 (Munkahelyi Egészségvédelem és Biztonsági Rendszer [MEBIR]) szabványok vonatkozásában. Az ISO 31000 szabványcsalád általános útmutatást ad egy szervezeten belül a kockázatkezelési folyamat tervezésére, megvalósítására és fenntartására. A jelenlegi tanulmány alapvető célja egy olyan újszerű módszer bemutatása, amely lehetővé teszi a különböző irányítási rendszerek hierarchikus, folyamatcentrikus, kockázatmenedzsment-alapú integrációját.
Resumo:
Nas últimas décadas tem-se verificado uma degradação contínua do meio ambiente, intensificada pela produção em massa das indústrias, aliado a um crescente consumismo da sociedade. Atualmente, as organizações e a sociedade civil demonstram uma crescente preocupação com os problemas ambientais, é neste contexto que surgem as questões associadas aos sistemas de gestão ambiental (SGA), como forma de integrar as preocupações das organizações com a proteção do ambiente. O presente projeto, realizado no âmbito do estágio curricular do Mestrado de Engenharia do Ambiente, pretende explorar e servir de apoio na implementação e desenvolvimento de um Sistema de Gestão Ambiental em duas Unidades Industriais da Amorim & Irmãos, S.A. Para o cumprimento dos objetivos do projeto foi realizada uma revisão bibliográfica da temática Sistemas de Gestão Ambiental, que possibilitou alargar o conhecimento sobre o tema do estágio. A segunda fase do trabalho consistiu na integração nos processos e infraestruturas da empresa. A terceira fase incluiu a realização dos trabalhos práticos necessários para a implementação e desenvolvimento dos Sistemas de Gestão Ambiental. Tendo em conta a metodologia seguida conclui-se que a realização este projeto foi muito vantajosa para todas as partes envolvidas, tendo contribuído: para um grande avanço na implementação e desenvolvimento dos Sistemas de Gestão Ambiental nas duas Unidades Industriais, permitindo assim melhorar os seus desempenhos ambientais; para a aquisição e consolidação de conhecimentos na área e proporcionou uma experiencia que será benéfica no envolvimento de um projeto desta natureza.
Resumo:
Se estudia la percepción del impacto de la aplicación del sistema de calidad ISO (International Standard Organization). Se aplicaron cuestionarios a los directores y docentes de dos centros con características contrastantes. Uno chico, gratuito, que recibe niños de una zona pobre y de bajos ingresos. El segundo es un centro grande, que recibe niños de zonas de ingresos altos y cobra una cuota alta. Los dos certificaron aspectos parciales con ISO, mostrando estrategias de implementación parecidas. Los resultados son similares y muestran limitados aportes del instrumento a ambos centros, con pocas diferencias entre sí. A la vez coinciden con otros estudios que se reseñan, que encontraron escasos aportes de los sistemas ISO a la mejora educativa, junto con sobrecarga administrativa