970 resultados para IRON-OXIDE NANOPARTICLES
Resumo:
Circulating tumor cells (CTCs) may induce metastases when detached from the primary tumor. The numbers of these cells in blood offers a valuable prognostic indication. Magnetoresistive sensing is an attractive option for CTC counting. In this technique, cells are labeled with nancomposite polymer beads that provide the magnetic signal. Bead properties such as size and magnetic content must be optimized in order to be used as a detection tool in a magnetoresistive platform. Another important component of the platform is the magnet required for proper sensing. Both components are addressed in this work. Nanocomposite polymer beads were produced by nano-emulsion and membrane emulsification. Formulations of the oil phase comprising a mixture of aromatic monomers and iron oxide were employed. The effect of emulsifier (surfactant) concentration on bead size was studied. Formulations of polydimethilsiloxane (PDMS) with different viscosities were also prepared with nano-emulsion method resulting in colloidal beads. Polycaprolactone (PCL) beads were also synthetized by the membrane emulsification method. The beads were characterized by different techiques such as dynamic light scattering (DLS), thermogravimetric analysis (TGA) and scanning electron microscopy (SEM). Additionally, the magnet dimensions of the platform designed to detect CTCs were optimized through a COMSOL multiphysics simulation.
Resumo:
This thesis details the findings of a study into the spatial distribution and speciation of 238U, 226Ra and 228Ra in the soils of the Cronamuck valley, County Donegal . The region lies on the north-eastern edge of the Barnesmore granite and has been the subject of uranium prospecting efforts in the past. The results of the project provide information on the practicability of geostatistical techniques as a means of estimating the spatial distribution of natural radionuclides and provide insight into the behaviour of these nuclides and their modes of occurrence and enrichment in an upland bog environment. The results of the geostatistical survey conducted on the area indicate that the primary control over the levels of the studied nuclides in the soil of the valley is the underlying geology. Isopleth maps of nuclide levels in the valley indicate a predominance of elevated nuclide levels in the samples drawn from the granite region, statistical analysis of the data indicating that levels of the nuclides in samples drawn from the granite are greater than levels drawn from the non-granite region by up to a factor of 4.6 for 238U and 4.9 for 226Ra. Redistribution of the nuclides occurs via drainage systems within the valley, this process being responsible for transport of nuclides away from the granite region resulting in enrichment of nuclides in soils not underlain by the granite. Distribution of the nuclides within the valley is erratic, the effect of drainage f lows on the nuclides resulting in localized enriched areas within the valley. Speciation of the nuclides within one of the enriched areas encountered in the study indicates that enrichment is as a result of saturation of the soil with drainage water containing trace amounts of radionuclides. 238U is primarily held within the labile fractions (exchangeable cat ions + easily oxidisable organics + amorphous iron oxides ) of the soil , 226Ra being associated with the non- labile fractions, most probably the resistant organic material. 228Ra displays a significant occurrence in both the labile and non- labile fractions. The ability of the soil to retain uranium appears to be affected largely by the redox status of the soil, samples drawn from oxidizing environments tending to have little or no uranium in the easily oxidisable and amorphous iron oxide fractions. This loss of uranium from oxidised soil samples is responsible for the elevated 226Ra /238U disequilibrium encountered in the enriched areas of the valley. Analysis of the data indicates that samples displaying elevated 226Ra/238U ratios also exhibit elevated 228Ra/238U ratios indicating a loss of uranium from the samples as opposed to an enrichment of 226Ra.
Resumo:
Macrophages play key roles in inflammatory disorders. Therefore, they are targets of treatments aiming at their local destruction in inflammation sites. However, injection of low molecular mass therapeutics, including photosensitizers, in inflamed joints results in their rapid efflux out of the joints, and poor therapeutic index. To improve selective uptake and increase retention of therapeutics in inflamed tissues, hydrophilic nanogels based on chitosan, of which surface was decorated with hyaluronate and which were loaded with one of three different anionic photosensitizers were developed. Optimal uptake of these functionalized nanogels by murine RAW 264.7 or human THP-1 macrophages as models was achieved after <4h incubation, whereas only negligible uptake by murine fibroblasts used as control cells was observed. The uptake by cells and the intracellular localization of the photosensitizers, of the fluorescein-tagged chitosan and of the rhodamine-tagged hyaluronate were confirmed by fluorescence microscopy. Photodynamic experiments revealed good cell photocytotoxicity of the photosensitizers entrapped in the nanogels. In a mouse model of rheumatoid arthritis, injection of free photosensitizers resulted in their rapid clearance from the joints, while nanogel-encapsulated photosensitizers were retained in the inflamed joints over a longer period of time. The photodynamic treatment of the inflamed joints resulted in a reduction of inflammation comparable to a standard corticoid treatment. Thus, hyaluronate-chitosan nanogels encapsulating therapeutic agents are promising materials for the targeted delivery to macrophages and long-term retention of therapeutics in leaky inflamed articular joints.
Resumo:
Today, after you descend into the valley of the Iowa River north of Marengo, the route turns east on county road F15 and approaches the historic Amana Society. Settled in the late 1850s by German immigrants of the Community of True Inspiration, the new arrivals utilized the local timber and stone resources to construct their buildings. During these early years several stone quarries were opened in the hills along the north wall of the Iowa River valley near East, Middle, and West Amana. Riders will pass close to one of these old quarries 0.7 miles west of West Amana. The stone taken from these quarries is beautiful quartz-rich sandstone that is cemented by light brown to orange tinged iron oxide. This stone was used in the construction of many buildings in Amana.
Resumo:
In the NE part of the Aiguilles Rouges Massif near Martigny, at the eastern contact of the Variscan Vallorcine granite to adjacent gneisses, a series of pitchblende (UO2)-veins occur. This paper determines the level of enrichment and mobility of uranium in soils situated in the vicinity of such a UO2-vein 7 km west of Martigny. Within an area of 50 x 100 m, situated on a relatively steep slope and characterized by a strong gramma-ray anomaly, six soil profiles including their plant cover and a reference soil profile outside the influence of the UO2-vein have been examined. The soil shows pH-values between 4 and 5 and is colluvial. The applied analytical methods for the metal contents include extraction methods, common for soil studies, and bulk analysis performed with X-ray fluorescence and ICP-MS. Uranium contents found in the uppermost 20 cm of the soil profiles vary from 2,500 ppm close to the vein to 15 ppm at the lowermost point of the study area. The reference soil has around 3 ppm uranium. At greater depth (20 to 40 cm) the U-content decreases to about half of the surface values, indicating a vertical transport of uranium within the soil profile. No systematic dependance of uranium-contents to grain size (amount of clay) nor to the amount of organic matter has been found. However, the good correlation between uranium and free iron oxide concentration suggests adsorption of uranium on iron oxy-hydroxides. The ashes of grass and mosses contain up to 90 ppm U, the blueberry and redwood only up to 3 ppm. Our observations suggest that at the surface the uranium is transported by downhill creep (solifluxion) of uranium-rich rock fragments. Liberated by oxidation of the uppermost fragments in a given soil column, the uranium migrates vertically until the conditions are favourable to adsorption onto Fe-oxy-hydroxides. However, as high U-contents of local surface water show, this adsorption does not lead to a significant retention of the uranium.
Resumo:
The chemical resistance of ceramic tiles is the subject of the European Standard UNE-EN ISO 10545-13. In order to evaluate the effect of aqueous solutions of several chemicals agents on the aspect of the tile surface, this standard establishes a series of tests at room temperature followed by visual inspection. According to this standard the tiles of this study are classified as being of maximum resistance (UHA). However operating conditions can be more aggressive than those detailed in the standard. So, a systematic study has been undertaken. In the present work, the effect of aqueous solutions of several organic and inorganic acids on the tile surface is evaluated. Samples immersed in different solutions are subjected to the following conditions: T= 60º C; pH=2 and to agitation processes. Visual analysis, as well as optical microscopy and scanning electron microscopy (SEM) were performed in order to determine the possible variation of the superficial aspect of tiles. Moreover, atomic absorption spectrophotometry has been used in order to obtain quantitative information concerning the solubility of system M (III)-L (M= Fe; L= H2O or L= ligand). The results obtained show, in all cases, a progressive dissolution of iron oxide precipitates presents in the ceramic body
Resumo:
Maghemite (g-Fe2O3) is the most usually found ferrimagnetic oxide in red basalt-derived soils. The variable degrees of ionic substitution of Fe3+ for different metals (e.g. Ti4+, Al3+, Mg2+, Zn2+, and Mn2+) and non-metals in the maghemite structure influence some cristallochemical features of this iron oxide. In this study, synthetic Zn-substituted maghemites were prepared by co-precipitation in alkaline aqueous media of FeSO4.7H2O with increasing amounts of ZnSO4.7H2O to obtain the following sequence of Fe3+ for Zn2+ substitutions: 0.0, 0.025, 0.05, 0.10, 0.15, 0.20, and 0.30 mol mol-1. The objective of this work was to evaluate the cristallochemical alterations of synthetic Zn-substituted maghemites. The dark black synthetic precipitated material was heated to 250 °C during 4 h forming a brownish maghemite that was characterized by chemical analysis as well as X ray diffraction (XRD), specific surface area and mass-specific magnetic susceptibility. The isomorphic substitution levels observed were of 0.0013, 0.0297, 0.0590, 0.1145, 0.1764, 0.2292 and 0.3404 mol mol-1, with the formation of a series of maghemites from Fe2Zn0O3 to Fe(1.49)Zn(0.770)O3 . The increase in Fe3+ for Zn2+ substitution, [Zn mol mol-1] increased the dimension a0 of the cubic unit cells of the studied maghemites according to the regression equation: a0 = 0.8343 + 0.02591Zn (R² = 0.98). On the other hand, the mean crystallite dimension and mass-specific magnetic susceptibility of the studied maghemites decreased with increasing isomorphic substitution.
Resumo:
Après avoir situé le contexte de la recherche et défini les enjeux principaux du travail, différents types de nanoparticules, ainsi que leurs principales caractéristiques, sont parcourues. L'élaboration de critères de sélection ayant permis de déterminer les types de nanoparticules potentiellement adaptés à !a détection de traces papillaires, l'étude s'est alors focalisée sur deux familles de composés: les quantum dots et les nanoparticules d'oxyde de silicium. Deux types de quantum dots ont été synthétisés : le tellurure de cadmium et le sulfure de zinc). Ils n'ont toutefois pas permis la détection de traces papillaires réalistes. En effet, seules des traces fraîches et enrichies en sécrétions ont pu être mises en évidence. Toutefois, des résultats ont été obtenus avec les deux types de quantum dots pour la détection de traces papillaires sanglantes. Après optimisation, les techniques rivalisent avec les méthodes couramment appliquées en routine. Cependant, l'interaction se produisant entre les traces et les nanoparticules n'a pas pu être déterminé. Les nanoparticules d'oxyde de silicium ont dès lors été appliquées dans le but de comprendre plus en détails les interactions avec les traces papillaires. Ces nanoparticules ont l'avantage d'offrir un très bon contrôle de surface, permettant ainsi une étude détaillée des phénomènes en jeu. Des propriétés de surface variables ont dès lors été obtenues en greffant diverses molécules à la surface des nanoparticules d'oxyde de silicium. Après avoir exploré différentes hypothèses d'interaction, il a pu être déterminé qu'une réaction chimique se produit lors qu'un groupement de type carboxyle est présent à la surface des particules. Ce groupement réagit avec les fonctions amines primaires des sécrétions. L'interaction chimique a ensuite pu être renforcée par l'utilisation d'un catalyseur, permettant d'accélérer la réaction. Dans la dernière partie du travail, les nanoparticules d'oxyde de silicium ont été comparées à une technique utilisée en routine, la fumigation de cyanoacrylate. Bien que des études plus approfondies soient nécessaires, il s'avère que l'application de nanoparticules d'oxyde de silicium permet une détection de très bonne qualité, moins dépendante du donneur que les techniques courantes. Ces résultats sont prometteurs en vue du développement d'une technique possédant une sensibilité et une sélectivité accrue. - Having situated the background of research and identified key issues of work, different types of nanoparticles and their main features are reviewed. The development of selection criteria lead to the identification of nanoparticles types potentially suitable for fingermarks detection. The study focused then On two families of compounds: quantum dots and silicon oxide nanoparticles. Two types of quantum dots were synthesized and characterised: cadmium telluride and zinc sulphide. Unfortunally, they did not allow the detection realistic fingermarks. Indeed, only fresh and groomed fingermarks have been detected. However, results have been obtained with both types of quantum dots for the detection of fingermarks in blood. After optimization procedures, the quantum dots based teshniques compete with the methods currently used in routine. However, the interaction occurring between fingermarks and nanoparticles could not be determined. Silicon oxide nanoparticles have therefore been applied in order to understand in detail the interactions With fingermarks. These nanoparticles have the advantage of providing a very good surface control, allowing am in-depth study of the phenomena involved. Versatile surface properties were therefore obtained by grafting various molecules on the surface of silicon oxide nanoparticles. Different hypotheses were investigated and it was determined that a chemical reaction occurred between the surface functionalised nanoparticles and the fingermark residues. The carboxyl groups on the surface of the particles react with primary amines of the secretions. Therefore, this interaction was improved by the use of a catalyst. In the last part of the work, silicon oxide nanoparticles were compared to a routinely used technique: cyanocrylate fuming. Although further studies are still needed, it appears that the application of silicon oxide nanoparticles allows fingermark detection of very good quality, with a lowered donor dependency. These results are promising for the development of techniques with greater sensitivity and selectivity.
Resumo:
Soil surveys are the main source of spatial information on soils and have a range of different applications, mainly in agriculture. The continuity of this activity has however been severely compromised, mainly due to a lack of governmental funding. The purpose of this study was to evaluate the feasibility of two different classifiers (artificial neural networks and a maximum likelihood algorithm) in the prediction of soil classes in the northwest of the state of Rio de Janeiro. Terrain attributes such as elevation, slope, aspect, plan curvature and compound topographic index (CTI) and indices of clay minerals, iron oxide and Normalized Difference Vegetation Index (NDVI), derived from Landsat 7 ETM+ sensor imagery, were used as discriminating variables. The two classifiers were trained and validated for each soil class using 300 and 150 samples respectively, representing the characteristics of these classes in terms of the discriminating variables. According to the statistical tests, the accuracy of the classifier based on artificial neural networks (ANNs) was greater than of the classic Maximum Likelihood Classifier (MLC). Comparing the results with 126 points of reference showed that the resulting ANN map (73.81 %) was superior to the MLC map (57.94 %). The main errors when using the two classifiers were caused by: a) the geological heterogeneity of the area coupled with problems related to the geological map; b) the depth of lithic contact and/or rock exposure, and c) problems with the environmental correlation model used due to the polygenetic nature of the soils. This study confirms that the use of terrain attributes together with remote sensing data by an ANN approach can be a tool to facilitate soil mapping in Brazil, primarily due to the availability of low-cost remote sensing data and the ease by which terrain attributes can be obtained.
Resumo:
In addition to the more reactive forms, metals can occur in the structure of minerals, and the sum of all these forms defines their total contents in different soil fractions. The isomorphic substitution of heavy metals for example alters the dimensions of the unit cell and mineral size. This study proposed a method of chemical fractionation of heavy metals, using more powerful extraction methods, to remove the organic and different mineral phases completely. Soil samples were taken from eight soil profiles (0-10, 10-20 and 20-40 cm) in a Pb mining and metallurgy area in Adrianópolis, Paraná, Brazil. The Pb and Zn concentrations were determined in the following fractions (complete phase removal in each sequential extraction): exchangeable; carbonates; organic matter; amorphous and crystalline Fe oxides; Al oxide, amorphous aluminosilicates and kaolinite; and residual fractions. The complete removal of organic matter and mineral phases in sequential extractions resulted in low participation of residual forms of Pb and Zn in the total concentrations of these metals in the soils: there was lower association of metals with primary and 2:1 minerals and refractory oxides. The powerful methods used here allow an identification of the complete metal-mineral associations, such as the occurrence of Pb and Zn in the structure of the minerals. The higher incidence of Zn than Pb in the structure of Fe oxides, due to isomorphic substitution, was attributed to a smaller difference between the ionic radius of Zn2+ and Fe3+.
Resumo:
The assessment of soil quality is based on indicators and indices derived from soil properties. However, intrinsic soil properties may interfere with other soil properties that vary under different land uses and are used to calculate the indices. The aim of this study was to assess the extent to which intrinsic soil properties (clay and iron oxide contents) explain variable soil properties (sum of bases, potential acidity, organic carbon, total porosity, and bulk density) under different land uses (native forest, no-tillage and conventional agriculture) on small family farms in Southern Brazil. The results showed that the five properties evaluated can be included in soil quality assessments and are not influenced by the clay and iron oxide contents. It was concluded that for little weathered 1:1 and 2:1 phyllosilicate rich-soils, if the difference between the maximum and the minimum clay content under the different land uses is less than about 200 g kg-1 and the iron oxide content less than about 15 g kg-1, the physico-chemical soil properties in the surface layer are determined mostly by the land use.
Resumo:
BACKGROUND: Stem cell labeling with iron oxide (ferumoxide) particles allows labeled cells to be detected by magnetic resonance imaging (MRI) and is commonly used to track stem cell engraftment. However, the validity of MRI for distinguishing surviving ferumoxide-labeled cells from other sources of MRI signal, for example, macrophages containing ferumoxides released from nonsurviving cells, has not been thoroughly investigated. We sought to determine the relationship between the persistence of iron-dependent MRI signals and cell survival 3 weeks after injection of syngeneic or xenogeneic ferumoxides-labeled stem cells (cardiac-derived stem cells) in rats. METHODS AND RESULTS: We studied nonimmunoprivileged human and rat cardiac-derived stem cells and human mesenchymal stem cells doubly labeled with ferumoxides and beta-galactosidase and injected intramyocardially into immunocompetent Wistar-Kyoto rats. Animals were imaged at 2 days and 3 weeks after stem cell injection in a clinical 3-T MRI scanner. At 2 days, injection sites of xenogeneic and syngeneic cells (cardiac-derived stem cells and mesenchymal stem cells) were identified by MRI as large intramyocardial signal voids that persisted at 3 weeks (50% to 90% of initial signal). Histology (at 3 weeks) revealed the presence of iron-containing macrophages at the injection site, identified by CD68 staining, but very few or no beta-galactosidase-positive stem cells in the animals transplanted with syngeneic or xenogeneic cells, respectively. CONCLUSIONS: The persistence of significant iron-dependent MRI signal derived from ferumoxide-containing macrophages despite few or no viable stem cells 3 weeks after transplantation indicates that MRI of ferumoxide-labeled cells does not reliably report long-term stem cell engraftment in the heart.
Resumo:
The catalytic dehydrogenation of ethylbenzene in presence of steam is the main commercial route to produce styrene. The industrial catalysts are potassium- and chromia-doped hematite which show low surface areas leading to bad performance and short life. In order to develop catalysts with high areas, the effect of beryllium on the textural properties and on the catalytic performance of this iron oxide was studied. The influence of the amount of the dopant, the starting material and the calcination temperature were also studied. In sample preparations, iron and beryllium salts (nitrate or sulfate) were hydrolyzed with ammonia and then calcinated. The experiments followed a factorial design with two variables in two levels (Fe/Be= 3 and 7; calcination temperature= 500 and 700ºC). Solids without any dopant were also prepared. Samples were characterized by elemental analysis, infrared spectroscopy, surface area and porosity measurements, X-ray diffraction, DSC and TG. The catalysts were tested in a microreactor at 524ºC and 1 atm, by using a mole ratio of steam/ ethylbenzene=10. The selectivity was measured by monitoring styrene, benzene and toluene formation. It was found that the effect of beryllium on the characteristics of hematite and on its catalytic performance depends on the starting material and on the amount of dopant. Surface areas increased due to the dopant as well as the nature of the precursor; samples produced by beryllium sulfate showed higher areas. Beryllium-doped solids showed a higher catalytic activity when compared to pure hematite, but no significant influence of the anion of starting material was noted. It can be concluded that beryllium acts as both textural and structural promoter. Samples with Fe/Be= 3, heated at 500ºC, lead to the highest conversion and were the most selective. However, catalysts prepared from beryllium sulfate are the most promising to ethylbenzene dehydrogenation due to their high surface area which could lead to a longer life.
Resumo:
Copper, aluminum and iron concentrations were determined in four geochemical fractions of three different basaltic soils from the northwest region of the Parana State, Brazil. The fractions examined were the reducible manganese dioxide and amorphous iron oxide, crystaline iron oxide, organic and residual. Metal concentrations were determined in the extracts by flame atomic absorption spectrophotometry. High Fe concentrations were extracted from the crystalline iron oxide (>20%), as well as the amorphous iron oxide (>12%). Copper was extracted from the amorphous and crystalline iron oxides in the range 5 to 12%, but low concentrations were bound to organic matter. Low concentrations of aluminum were extracted (<8%) from the amorphous and crystaline iron oxides, and organic matter. High concentrations of aluminum were found in the residual fraction.
Resumo:
The destabilization mechanism of suspensions of positively charged iron oxide particles by aluminum sulphate was investigated, aiming to evaluate the efficiency of the latter as a coagulant for natural surface waters from iron ore mining plants. Synthetic waters that simulate natural suspensions were used. The best coagulant dosage was found to be 100 mg/L at pH 4. The specific adsorption of hydrolysis products of aluminum salts on iron oxide particles and heterocoagulation processes involving differently charged substrates are proposed to explain the turbidity reduction of the suspensions.