998 resultados para IONIC PARTITION DIAGRAMS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The sample solution of KNO3 is ejected into the gas phase and the ionic dusters of K+(KNO3)(n) and NO3-(KNO3)(m) we formed and observed by electrospray ionization mass spectrometry (ESIMS). The full mass spectra of both the positive ion and the negative ion show that the differences between each peak nearby are all about 101(m/z), which correspond to the molecular weight of KNO3. The general formula of the ionic clusters can be assigned as K+ (KNO3)(n) and NO3--(KNO3)(m).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Composite polymeric electrolytes of PEO-LiClO4-Al2O3 and PEO-LiClO4-EC were prepared and the ionic conductivity by a.c. impedance was calculated using four different methods, and three kinds of representations of a.c. impedance spectra were adopted. The first is based on the Nyquist impedance plot of the imaginary part (Z") versus the real part (Z') of the complex impedance. The second and the third correspond to the plots of imaginary impedance Z" as a function of frequency (f), and the absolute value (\Z\) and phase angle (theta) as a function of f, respectively. It was found that the values of the ionic conductivity calculated using the three representations of a.c. impedance spectra are basically identical.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

New typical ionic clusters with complex anions could be formed directly from the KNO3 aqueous solution by means of the electrospray ionization mass spectrometry(ESIMS). The difference between the neighboring peaks(m/z), which corresponded to the molecule weight of KNO3 being 101 in the full mass spectrometry of the positive-ion and the negative-ion. The general formula of the ionic clusters belonged to K+(KNO3)(n) and NO3- (KNO3)(m).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of potassium thiocyanate on the partitioning of lysozyme and BSA in polyethylene glycol 2000/ammonium sulfate aqueous two-phase system has been investigated. As a result of the addition of potassium thiocyanate to the PEG/ammonium sulfate system, the PEG/mixed salts aqueous two-phase system was formed. It was found that the potassium thiocyanate could alter the pH difference between the two phases, and, thus, influence the partition coefficients of the differently charged proteins. The relationship between partition coefficient of the proteins and pH difference between two phases has been discussed. It was proposed that the pH difference between two phases could be employed as the measurement of electrostatic driving force for the partitioning of charged proteins in polyethylene glycol 2000/ammonium sulfate aqueous two-phase system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using a graft modification method, a comblike polymer host (CBPE550) was synthesized by reacting monomethyl ether of poly(ethylene glycol) (PEGMA) with ethylene-maleic anhydride copolymer (EMAC) and endcapping the residual carboxylic acid with methanol. The product was characterized by IR and elementary analysis. Result showed that the product was amorphous and semi-ester product is accord with reaction equation. There were two peaks in the plot of the ionic conductivity against Li salt concentration. The plot of log a against 1/(T - T-0) shows a dual VTF behavior when using the glass transition temperature of PEO of side chain as T beta. The comblike polymer is a white rubbery solid. It can be well-dissolved in acetone. (C) 1999 Elsevier Science Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The diffusion coefficients(D-app) and the heterogeneous electron-transfer rate constants(k(s)) for ferrocene in MPEG/salt electrolytes were determined by using steady-state voltammetry. The temperature dependence of the two parameters obeys the Arrhenius equation. The effect of the ionic size of six supporting electrolytes on diffusion and electron transfer dynamics of ferrocene was discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Three comb polymers (CP) based on modified alternating methyl vinyl ether/maleic anhydride copolymer with oligo-oxyethylene side chains of the type -O(CH2CH2O)(n)CH3 were synthesized and characterized, and the ionic conductivity of CP/salt complexes is reported. The conductivity of these complexes was about 10(-5)-10(-6) S cm(-1) at room temperature. The conductivity, which displayed non-Arrhenius behaviour, was analysed using the Vogel-Tammann-Fulcher equation. The conductivity maxima appear at lower salt concentration, when CP has longer side chains. Infrared (i.r.) was used to study the cation-polymer interaction. I.r. results also indicate that the ester in CP might decompose at 140 degrees C and reproduce the maleic anhydride ring. (C) 1997 Elsevier Science Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Comb-like polymers (CP) based on modified alternating methyl vinyl ether/maleic anhydride copolymer with oligo-oxyethylene side chains of the type -O(CH2CH2O)(n)CH3 have been synthesized and characterized, and complexed with lithium salts to form amorphous polymer electrolytes. CP/salt complexes showed conductivity up to 10(-5)Scm(-1) at room temperature. The temperature dependence of ionic conductivity suggests that the ion transport is controlled by segmental motion of the polymer, shown by linear curves obtained in Vogel-Tammann-Fulcher plots. The ionic conductivity maximum moves to a higher salt concentration as the temperature increases. IR results indicate that the ester in CP might decompose at 140 degrees C and reproduce the maleic anhydride ring.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An effort has been made to modify the mechanical behaviour of our previously reported gel-type gamma-radiation crosslinked polyethylene oxide (PEO)-LiClO4 polymer electrolyte. A highly polar and gamma-radiation crosslinkable crystalline polymer, polyvinylidene fluoride (PVDF), was selected to blend with PEO and then subjected to gamma-irradiation in order to make an simultaneous interpenetrating network (SIN), which was used as a polymer host to impart stiffness to the plasticized system. Experimental results have shown that the presence of PVDF in the system, through gamma-radiation induced SIN formation, could not only give a rather high mechanical modulus of 10(7) Pa at ambient temperature, but also maintain the room temperature ionic conductivity at a high level (greater than 10(-4) S/cm). DSC, DMA and conductivity measurement techniques were used to examine the effects of blending, gamma-irradiation and plasticization on the variations of glass transition and melting endotherm, on the appearance of high elastic plateau and on the temperature dependence of ionic conductivity: In addition, it was found that, in contrast with the unplasticized system, the ionic conductivity mechanism of this gel-type electrolyte seems to conform to the Arrhenius model, suggesting that, as a result of the high degree of plasticization, the polymer chains act mainly as the skeleton of the networks or polymer cages to immobilize the liquid electrolyte solution, whereas the ionic species migrate as if they were in a liquid medium. (C) 1997 Elsevier Science Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Comb-like polymers (CP) based on modified alternating methyl vinyl ether/maleic anhydride copolymer with oligo-oxyethylene side chains of the type-O(CH2CH2O)(n)CH3 have been synthesized and characterized, and complexed with LiNO3 to form an amorphous polymer electrolyte. CP/salt complexes showed conductivity up to 10(-5) S/cm at room temperature. The temperature dependence of ionic conductivity suggests that the ion transport is controlled by segmental motion of the polymer, shown by linear curves obtained in Vogel-Tammann-Fulcher plots. The ionic conductivity maximum moves to a higher salt concentration as the temperature increases. IR results also indicate that the ester in CP might decompose at 140 degrees C and reproduce the maleic anhydride ring.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, the A(m) indices and the molecular connectivity indices of fifty aromatic compounds have been calculated, and applied for studying on relationship between partition coefficient and structure of aromatic compounds. The results demonstrate that the property of compounds can be described better with revisionary A(m) indices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Three comb polymers(CP) with oligo-oxyethylene side chains of the type -O(CH2CH2O)(n)CH3 were prepared from methyl vinyl ether/maleic anhydride alternating copolymer. Homogeneous amorphous polymer electrolytes were made from CP and LiCF3SO3 or LiClO4 by solvent-casting method, and their conductivities were measured as a function of temperature and salt concentration. The conductivity which displayed non-Arrhenius behaviour was analyzed using the Vogel-Tammann-Fulcher equation. The conductivity maximum appears at lower salt concentration when CP has longer side chains. XPS was used to study the cation-polymer interaction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Gel electrolytes were prepared by thermal polymerization of diethylene glycol dimethacrylate (DIEGD) or its copolymer with methoxy polyethylene glycol monomethacrylate, molecular weight 400 (PEM(400)), at a molar ratio of 3/1 in the presence of propylene carbonate (PC) and LiClO4. Conductivity was measured by impedance spectroscopy. It was found that the conductivity data follow the Arrhenius equation in the homopolymer gel system, while the VTF equation holds true in the copolymer gel system. An increase in conductivity was observed in the copolymer gel system. However, whether in the homopolymer or in the copolymer gel system, a maximum ambient temperature conductivity was found at a salt concentration near 1.50 mol/l. Further, the activation energy values calculated from Arrhenius plots for the homopolymer gel system tended to reach a minimum value with increasing salt concentration. (C) 1996 Elsevier Science Ltd

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Gel electrolytes have been prepared by thermal polymerization of poly(polyethylene glycol dimethacrylate) (P(PEGD)) in the presence of propylene carbonate (PC) and alkali metal salts, such as LiClO4, LICF(3)SO(3) and LiBF4. The conductivity was studied by means of impedance spectroscopy, and it is found that the temperature dependence of conductivities follow a Arrhenius relationship when the molar percentage of PC is higher than 75% or LiClO4 concentration is lower than 0.9 mol/l. However, when LiCF3SO3 or LiBF4 is used instead of LiClO4 as the salt, the situation is different. For LICF(3)SO(3), the Arrhenius relationship almost holds true for all the salt concentrations studied; while for LiBF4, the Arrhenius equation hardly fits for any salt concentration. The dependence of activation energy on salt concentration is also examined, both for LiClO4 and LiCF3SO3, the values of E(a) tend to reach a minimum value with increasing salt concentration. Copyright (C) 1996 Elsevier Science Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A comb-shaped polymer (BM350) with oligo-oxyethylene side chains of the type -O(CH2CH2O)(7)CH3 was prepared from methyl vinyl ether/maleic anhydride copolymer. Homogeneous amorphous polymer electrolyte complexes were made from the comb polymer and LICF(3)SO(3) by solvent casting from acetone, and their conductivities were measured as a function of temperature and salt concentration. Maximum conductivity close to 5.08 X 10(-5) Scm(-1) was obtained at room temperature and at a [Li]/[EO] ratio of about 0.12. The conductivity which displayed non-Arrhenius behaviour was analyzed using the Vogel-Tammann-Fulcher equation and interpreted on the basis of the configurational entropy model. The results of mid-IR showed that the coordination of Li+ to side chains made the C-O-C band become broader and shift slightly. X-ray photoelectron spectroscopy analysis indicated that the oxygen atoms in the two situations could coordinate to Li+ and this coordination resulted in the reduction of the electron orbit binding energy of F and S.