981 resultados para Hydrated cements
Resumo:
The eco-efficient, self-compacting concrete (SCC) production, containing low levels of cement in its formulation, shall contribute for the constructions' sustainability due to the decrease in Portland cement use, to the use of industrial residue, for beyond the minimization of the energy needed for its placement and compaction. In this context, the present paper intends to assess the viability of SCC production with low cement levels by determining the fresh and hardened properties of concrete containing high levels of fly ash (FA) and also metakaolin (MK). Hence, 6 different concrete formulations were produced and tested: two reference concretes made with 300 and 500 kg/m3 of cement; the others were produced in order to evaluate the effects of high replacement levels of cement. Cement replacement by FA of 60% and by 50% of FA plus 20% of MK were tested and the addition of hydrated lime in these two types of concrete were also studied. To evaluate the self-compacting ability slump flow test, T500, J-ring, V-funnel and L-box were performed. In the hardened state the compressive strength at 3, 7, 14, 21, 28 and 90 days of age was determined. The results showed that it is possible to produce low cement content SCC by replacing high levels of cement by mineral additions, meeting the rheological requirements for self-compacting, with moderate resistances from 25 to 30 MPa after 28 days.
Resumo:
Tese de Doutoramento - Civil Engineering
Resumo:
Increasing building energy efficiency is one the most cost-effective ways to reduce emissions. The use of thermal insulation materials mitigates heat loss in buildings, therefore minimising heat energy needs. In recent years, several papers were published on the subject of foam alkali-activated cements with enhanced thermal conductivity. However, on those papers cost analysis was strangely avoided. This paper presents experimental results on one-part alkali-activated cements. It also includes global warming potential assessment and cost analysis. Foam one-part alkali-activated cements cost simulations considering two carbon dioxide social costs scenarios are also included. The results show that one-part alkali-activated cements mixtures based on 26%OPC + 58.3%FA + 8%CS + 7.7%CH and 3.5% hydrogen peroxide constitute a promising cost-efficient (67 euro/m3), thermal insulation solution for floor heating systems. This mixture presents a low global warming potential of 443 KgCO2eq/m3. The results confirm that in both carbon dioxide social cost scenarios the mixture 26 OPC + 58.3 FA + 8 CS + 7.7 CH with 3.5% hydrogen peroxide foaming agent is still the most cost efficient.
Resumo:
Dissertação de mestrado integrado em Engenharia Biomédica
Resumo:
Ideal candidates for the repair of robust biological tissues should exhibit diverse features such as biocompatibility, strength, toughness, self-healing ability and a well-defined structure. Among the available biomaterials, hydrogels, as highly hydrated 3D-crosslinked polymeric networks, are promising for Tissue Engineering purposes as result of their high resemblance with native extracellular matrix. However, these polymeric structures often exhibit a poor mechanical behavior, hampering their use in load-bearing applications. During the last years, several efforts have been made to create new strategies and concepts to fabricate strong and tough hydrogels. Although it is already possible to shape the mechanical properties of artificial hydrogels to mimic biotissues, critical issues regarding, for instance, their biocompatibility and hierarchical structure are often neglected. Therefore, this review covers the structural and mechanical characteristics of the developed methodologies to toughen hydrogels, highlighting some pioneering efforts employed to combine the aforementioned properties in natural-based hydrogels.
Resumo:
Load-bearing soft tissues such as cartilage, blood vessels and muscles are able to withstand a remarkable compressive stress of several MPa without fracturing. Interestingly, most of these structural tissues are mainly composed of water and in this regard, hydrogels, as highly hydrated 3D-crosslinked polymeric networks, constitute a promising class of materials to repair lesions on these tissues. Although several approaches can be employed to shape the mechanical properties of artificial hydrogels to mimic the ones found on biotissues, critical issues regarding, for instance, their biocompatibility and recoverability after loading are often neglected. Therefore, an innovative hydrogel device made only of chitosan (CHI) was developed for the repair of robust biological tissues. These systems were fabricated through a dual-crosslinking process, comprising a photo- and an ionic-crosslinking step. The obtained CHIbased hydrogels exhibited an outstanding compressive strength of ca. 20 MPa at 95% of strain, which is several orders of magnitude higher than those of the individual components and close to the ones found in native soft tissues. Additionally, both crosslinking processes occur rapidly and under physiological conditions, enabling cellsâ encapsulation as confirmed by high cell survival rates (ca. 80%). Furthermore, in contrast with conventional hydrogels, these networks quickly recover upon unloading and are able to keep their mechanical properties under physiological conditions as result of their non-swell nature.
Resumo:
In Brazil all the fishes belonging to the sub-family Curimatinae are called « saguirú ». The present work gives a biological study of the Curimatus elegans Steind., a small fish without any economical importance, which is to be found along the whole brazilian coast, down till Paraguay. The specimens utilized for the present study come from Fortaleza (Ceará, north-eastern Brazil). The C. elegans is « ilyophagus », that means, it feeds itself exclusively with those organic materials to be found in mud, specially with microscopical algae. The intestines are very extent, some of them measuring about 9 to 11 times body's length. Studies have been made about growth and age of the C. elegans; the biggest sizes found were of 153 mm. for females and 88 mm. for males. The C. elegans shows developed sexual glands during a long period (April to September). The movements of the spermatozoa, in contact with water is of 40 to 50 seconds of intense movements, ceasing after 70 to 100 seconds. In contact with 0.5% NaCl-solution spermatozoa show a big increase in movements-time, that can last till about 25 minutes. The eggs' diameter measures 0.70 to 0.73 mm., mature and hydrated it attains 0.93 to 1,00 mm. There is a certain correlation between the size of the body and the quantity of eggs. Big specimens can produce a total of 200.000 eggs. The average quantity contained in 1 gr. and 1 cc. is 6018 and 6229 eggs, respectively. Maturity and spawning in laboratory has been obtained due to injections of suspension of fish-hypophysis. Three or four hours after the injection, fishes show more movement and evident signs of excitation, proceeding spawning after 5 to 6 hours. Males, persecuting females, describe successive circles (merry-go-round) - carroussel), swimming side by side with females up to water's surface, where sexual products are start beating dry, for there is no blood yet. Circulation-scheme is to be found on fig. 4 and 5. The swim-bladder and the stomach are but delineated; the intestine is formed by a cylindric tube, all closed. At the place, where later on there will open the mouth, we find a group of ciliary hairs that produce a liquid current, very evident by the semi-circle formed by attached solid particles. After 36 hours, opening of the mouth and formation of the gill slits begin. At the age of 90 hours (4 mm.) the larvas swim well and start to feed themselves; the digestive tube is now all open and the swimbladder works already. During the first days of life, larvas have an adhesive organ situated at their frontal region (fig. 7) in form of a crescent, by means of which they hang to surrounding vegetation (fig. 6). When the larva begins to swim and to feed itself and its yolk are having been absorbed. the adhesive organ retracts and disappears. While larvas and alevins feed themselves with plancton, they have small eye-teeth, which disappear,. when fishes become « ilyophagus ». There exist too, during their life as larvas, pharyngeal-teeth. The lateral line appears in the larva after 16 to 18 days; more or less at the same time all fins are completely developed. Shortly after, first scales appear (20 to 23 days). Evolution of intestines twisting followed (fig. 9). Larvas show at different parts of their bodies small of organs excretory functions, that are constituted by bottons in serial disposition, every one with an excretory canal that opens towards the outside. These formations disappear suddenly when larvas attain their phase of alevin. The existence of a great number of said formations at the caudal fin (fig. 12) is of great interest. In our experiences of breeding we have employed several thousands of C. elegans larvas in different environs and we made conditions of surrounding change (illumination), depth of water, temperature, presence of sand at bottom of aquariums and without sand, food). In this way we could compare the results obtained, estimate the action of each factor for the realisation of a good bring-up of larvas.
Resumo:
Biocorrosion means any process of corrosion in wich microorganisms are somehow involved. As far as the petroleum industry is concerned, the anaerobic type is the more important, with Sulphate-Reducing Bacteria (SRB) accouting for half of the described processes. SRB are obligate anaerobs that use sulphur, sulphate or other oxidized sulphur compounds as oxidizing agents when decomposing organic material. A typical product of SRB metabolism, hydrogen sulphide -H2S-, is extremely toxic. In the present work we review the literature on mechanisms underlying biocorrosive process in wich SRB are involved and summarize some of the ultrastructural and eletrochemical work developed using SRB obtained from water injection flow in wells located on PETROBRAS offshore marine plataforms, sampled directly in the field over metallic probes, or cultured under laboratory conditions. Biofilms develop when SRB adhere to inert surfaces. A high diversity of morphological types is found inside these biofilms. Their extracellular matrix is highly hydrated and mainly anionic, as shown by its avid reaction with cationic compounds like ruthenium red. We have noted that variations in iron contet lead to interesting changes in the ultrastructure of the bacterial cell coat and also in the rate of corrosion induced in metallic test cupons. Since routine methods to prevent and treat SRB contamination and biodeterioration involve the use of biocides that are toxic and always have some environmental impact, an accurate diagnosis of biocorrosion is always required prior to a treatment decision. We developed a method that detects and semi-quantifies the presence of living or dead SRB by using free silver potentials as an indicator of corrosive action by SRB-associated sulphides. We found a correlation between sulphide levels (determined either by spectrophotometry, or using a silver electrode -E(Ag)- that measured changes in free potentials induced by the presence of exogeneously added sulphide) and SRB concentration (enumerated by a culturing method). E (Ag) was characterized under a variety of conditions andwas found to be relatively immune to possible interference resulting from aeration of media or from the psence of iron corrosion products. The method offers a simple, rapid, and effective means of diagnosing biocorrosive processes prior to their control.
Resumo:
The treatment of hip osteoarthritis with total hip arthroplasty has continuously evolved since it was first introduced in the sixties. The problem of aseptic loosening of the cemented prostheses, mainly in young active patients, has stimulated two different types of research: on one side the improvement of cementing techniques and on the other side the development of cementless osteoinegrable implants. We discuss the problems of these cementless hip prostheses. Recently published anatomic and biomechanic studies have led to the development of personalized custom femoral stems for each patient. The conception technique and first clinical results are described.
Resumo:
The structure of the yeast DNA-dependent RNA polymerase I (RNA Pol I), prepared by cryo-negative staining, was studied by electron microscopy. A structural model of the enzyme at a resolution of 1.8 nm was determined from the analysis of isolated molecules and showed an excellent fit with the atomic structure of the RNA Pol II Delta4/7. The high signal-to-noise ratio (SNR) of the stained molecular images revealed a conformational flexibility within the image data set that could be recovered in three-dimensions after implementation of a novel strategy to sort the "open" and "closed" conformations in our heterogeneous data set. This conformational change mapped in the "wall/flap" domain of the second largest subunit (beta-like) and allows a better accessibility of the DNA-binding groove. This displacement of the wall/flap domain could play an important role in the transition between initiation and elongation state of the enzyme. Moreover, a protrusion was apparent in the cryo-negatively stained model, which was absent in the atomic structure and was not detected in previous 3D models of RNA Pol I. This structure could, however, be detected in unstained views of the enzyme obtained from frozen hydrated 2D crystals, indicating that this novel feature is not induced by the staining process. Unexpectedly, negatively charged molybdenum compounds were found to accumulate within the DNA-binding groove, which is best explained by the highly positive electrostatic potential of this region of the molecule, thus, suggesting that the stain distribution reflects the overall surface charge of the molecule.
Resumo:
Percutaneous vertebro-plasty is an efficient treatment of the symptomatic vertebral compression fracture refractory to optimal medical therapy. The procedure is used for neoplastic lesions, aggressive angioma, but also osteoporotic compression fractures. In order to adequately advice our patients, it is essential to know its indications and possible complications. However, to practice a vertebro-plasty for an osteoporotic compression fracture without any long term management of the osteoporotic disease is useless. Unfortunately, it still happens too often and it is essential that orthopedic surgeons, general practitioner, radiologist, rheumatologist, and any practitioners work together to guarantee the optimal management of our patients.
Resumo:
X-ray microtomography has become a new tool in earth sciences to obtain non-destructive 3D-image data from geological objects in which variations in mineralogy, chemical composition and/or porosity create sufficient x-ray density contrasts.We present here first, preliminary results of an application to the external and internal morphology of Permian to Recent Larger Foraminifera. We use a SkyScan-1072 high-resolution desk-top micro-CT system. The system has a conical x-ray source with a spot size of about 5µm that runs at 20-100kV, 0-250µA, resulting in a maximal resolution of 5µm. X-ray transmission images are captured by a scintillator coupled via fibre optics to a 1024x1024 pixel 12-bit CCD. The object is placed between the x-ray source and the scintillator on a stub that rotates 360°around its vertical axis in steps as small as 0.24 degrees. Sample size is limited to 2 cm due to the absorption of geologic material for x-rays. The transmission images are back projected using a Feldkamp algorithm into a vertical stack of up to 1000 1Kx1K images that represent horizontal cuts of the object. This calculation takes 2 to several hours on a Double-Processor 2.4GHz PC. The stack of images (.bmp) can be visualized with any 3D-imaging software, used to produce cuts of Larger Foraminifera. Among other applications, the 3D-imaging software furnished by SkyScan can produce 3D-models by defining a threshold density value to distinguish "solid" from "void. Several models with variable threshold values and colors can be imbricated, rotated and cut together. The best results were obtained with microfossils devoid of chamber-filling cements (Permian, Eocene, Recent). However, even slight differences in cement mineralogy/composition can result in surprisingly good x-ray density contrasts.X-ray microtomography may develop into a powerful tool for larger microfossils with a complex internal structure, because it is non-destructive, requires no preparation of the specimens, and produces a true 3D-image data set. We will use these data sets in the future to produce cuts in any direction to compare them with arbitrary cuts of complex microfossils in thin sections. Many groups of benthic and planktonic foraminifera may become more easily determinable in thin section by this way.
Resumo:
Geochemical and petrographical studies of lavas and ignimbrites from the Quaternary Nisyros-Yali volcanic system in the easternmost part of the Hellenic arc (Greece) reveal insight into magma generating processes. A compositional gap between 61 and 68 wt.% SiO2 is recognized that coincides with the stratigraphic distinction between pre-caldera and postcaldera volcanic units. Trace element systematics support the subdivision of Nisyros and Yali volcanic units into two distinct suites of rocks. The variation of Nd and Hf present day isotope data and the fact that they are distinct from the isotope compositions of MORB rule out an origin by pure differentiation and require assimilation of a crustal component. Lead isotope ratios of Nisyros and Yali volcanic rocks support mixing of mantle material with a lower crust equivalent. However, Sr-87/Sr-86 ratios of 0.7036-0.7048 are incompatible with a simple binary mixing scenario and give low depleted mantle extraction ages (< 0.1 Ga), in contrast with Pb model ages of 0.3 Ga and Hf and Nd model ages of ca. 0.8 Ga. The budget of fluid-mobile elements Sr and Pb is likely to be dominated by abundant hydrous fluids characterised by mantle-like Sr isotope ratios. Late stage fluids probably were enriched in CO2, needed to explain the high Th concentrations. The occurrence of hydrated minerals (e.g., amphibole) in the first post-caldera unit with the lowermost Sr-87/Sr-86 ratio of 0.7036 +/- 2 can be interpreted as the result of the increased water activity in the source. The presence of two different plagioclase phenocryst generations in the first lava subsequent to the caldera-causing event is indicative for a longer storage time of this magma at a shallower level. A model capable of explaining these observations involves three evolutionary stages. First stage, assimilation of lower crustal material by a primitive magma of mantle origin (as modelled by Nd-Hf isotope systematics). This stage ended by an interruption in replenishment that led to an increase of crystallization and, hence, an increase in viscosity, suppressing eruption. During this time gap, differentiation by fractional crystallization led to enrichment of incompatible species, especially aqueous fluids, to silica depolymerisation and to a decrease in viscosity, finally enabling eruption again in the third stage. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
OBJECTIVES: To carry out a meta-analysis in order to assess the influencing factors on retention loss and marginal discoloration of cervical restorations made of composites and glass ionomer (derivates). METHODS: The literature was searched for prospective clinical studies on cervical restorations with an observation period of at least 18 months. RESULTS: Fifty clinical studies involving 40 adhesive systems matched the inclusion criteria. On average, 10% of the cervical fillings were lost and 24% exhibited marginal discoloration after 3 years. The variability ranged from 0% to 50% for retention loss and from 0% to 74% for marginal discoloration. Hardly any secondary caries was detected. When linear mixed models with a study and experiment effect were used, the analysis revealed that the adhesive/restorative class had the most significant influence, with 2-step self-etching adhesive systems performing best and 1-step self-etching adhesive systems performing worst; 3-step etch-and-rinse systems, glass ionomers/resin-modified glass ionomers, 2-step etch-and-rinse systems and polyacid-modified resin composites were ranked in between. Restorations placed in teeth whose dentin/enamel had been prepared/roughened showed a statistically significant higher retention rate than those placed in teeth with unprepared dentin (p<0.05). Beveling of the enamel and the type of isolation used (rubberdam/cotton rolls) had no significant influence. SIGNIFICANCE: The clinical performance of cervical restorations is significantly influenced by the type of adhesive system used and/or the adhesive class to which the system belonged and whether the dentin/enamel is prepared or not. 2-Step self-etching- and 3-step etch&rinse systems shall be chosen over 1-step self-etching systems and glass ionomer derivates. The dentin (and enamel) surface shall be roughened before placement of the restoration.
Resumo:
Purpose: To evaluate whether the correlation between in vitro bond strength data and estimated clinical retention rates of cervical restorations after two years depends on pooled data obtained from multicenter studies or single-test data. Materials and Methods: Pooled mean data for six dentin adhesive systems (Adper Prompt L-Pop, Clearfil SE, OptiBond FL, Prime & Bond NT, Single Bond, and Scotchbond Multipurpose) and four laboratory methods (macroshear, microshear, macrotensile and microtensile bond strength test) (Scherrer et al, 2010) were correlated to estimated pooled two-year retention rates of Class V restorations using the same adhesive systems. For bond strength data from a single test institute, the literature search in SCOPUS revealed one study that tested all six adhesive systems (microtensile) and two that tested five of the six systems (microtensile, macroshear). The correlation was determined with a database designed to perform a meta-analysis on the clinical performance of cervical restorations (Heintze et al, 2010). The clinical data were pooled and adjusted in a linear mixed model, taking the study effect, dentin preparation, type of isolation and bevelling of enamel into account. A regression analysis was carried out to evaluate the correlation between clinical and laboratory findings. Results: The results of the regression analysis for the pooled data revealed that only the macrotensile (adjusted R2 = 0.86) and microtensile tests (adjusted R2 = 0.64), but not the shear and the microshear tests, correlated well with the clinical findings. As regards the data from a single-test institute, the correlation was not statistically significant. Conclusion: Macrotensile and microtensile bond strength tests showed an adequate correlation with the retention rate of cervical restorations after two years. Bond strength tests should be carried out by different operators and/or research institutes to determine the reliability and technique sensitivity of the material under investigation.