953 resultados para Hybrid-electric vehicles


Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report the partitioning of the interaction-induced static electronic dipole (hyper)polarizabilities for linear hydrogen cyanide complexes into contributions arising from various interaction energy terms. We analyzed the nonadditivities of the studied properties and used these data to predict the electric properties of an infinite chain. The interaction-induced static electric dipole properties and their nonadditivities were analyzed using an approach based on numerical differentiation of the interaction energy components estimated in an external electric field. These were obtained using the hybrid variational-perturbational interaction energy decomposition scheme, augmented with coupled-cluster calculations, with singles, doubles, and noniterative triples. Our results indicate that the interaction-induced dipole moments and polarizabilities are primarily electrostatic in nature; however, the composition of the interaction hyperpolarizabilities is much more complex. The overlap effects substantially quench the contributions due to electrostatic interactions, and therefore, the major components are due to the induction and exchange induction terms, as well as the intramolecular electron-correlation corrections. A particularly intriguing observation is that the interaction first hyperpolarizability in the studied systems not only is much larger than the corresponding sum of monomer properties, but also has the opposite sign. We show that this effect can be viewed as a direct consequence of hydrogen-bonding interactions that lead to a decrease of the hyperpolarizability of the proton acceptor and an increase of the hyperpolarizability of the proton donor. In the case of the first hyperpolarizability, we also observed the largest nonadditivity of interaction properties (nearly 17%) which further enhances the effects of pairwise interactions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We used a Stark-Optoacoustic cell and hybrid waveguide resonators to perform an Infrared and Far Infrared Stark Spectroscopy study on some transitions of (CD3OH)-C-13. Different behaviours of the transitions in the presence of a d.c. electric field were observed. The Stark splittings of six FIR laser lines ranging from 34 to 136 MHz/kVcm(-1) were determined. The analysis of the behaviour of the IR and FIR transitions in the presence of the external electric fields gives important and exclusive information on the levels involved in the transitions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Eu3+ -doped titania-silica planar waveguides were prepared from tetraethylorthotitanate (TEOT) and modified silane 3-amino-propyltriethoxysilane (APTS). Films were deposited on borosilicate glass substrates by a dip-coating technique. The refractive index, the thickness and the total attenuation coefficient of the waveguides were measured at 632.8 and 1550 nm by prism coupling technique. Starting from pure titania films, the addition of modified silane leads to a decrease in the refractive index and an increase in thickness. Squared electric field simulation has shown that the light confinement in the waveguide increases with the silane content of the so]. Emission spectra present a broad emission band due to the modified silane and EU emission transitions arising mainly from the D-5(0) level to the F-7(J) (J = 0-4) manifolds. The dependence of transition intensities and excited state lifetimes on the initial composition and also on the heat treatment performed was interpreted in terms of structural changes occurring during the preparation process. (C) 2002 Elsevier B.V. B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper a hybrid solid oxide fuel cell (SOFC) system is analyzed. This system applies a combined cycle utilizing gas turbine associated to a SOFC for rational decentralized energy production. Initially the relative concepts about the fuel cell are presented, followed by some chemical and technical informations such as the change of Gibbs free energy in isothermal fuel oxidation (or combustion) directly into electricity. This represents a very high fraction of the lower heating value (LHV) of a hydrocarbon fuel. In the next step a methodology for the study of SOFC associated with a gas turbine system is developed, considering the electricity and steam production for a hospital, as regard to the Brazilian conditions. This methodology is applied to energetic analysis. Natural gas is considered as a fuel. In conclusion, it is shown by a Sankey Diagram that the hybrid SOFC system may be an excellent opportunity to strengthen the decentralized energy production in Brazil. It is necessary to consider that the cogeneration in this version also is a sensible alternative from the technical point of view, demanding special methods of design, equipment selection and mainly of the contractual deals associated to electricity and fuel supply.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A novel hybrid high power rectifier capable to achieve unity power factor is proposed in this paper. Single-phase SEPIC rectifiers are associated in parallel with each leg of three-phase 6-pulse diode rectifier resulting in a programmable input current waveform structure. In this paper it is described the principles of operation of the proposed converter with detailed simulation and experimental results. For a total harmonic distortion of the input line current (THDI) less than 2% the rated power of the SEPIC rectifiers is 33%. Therefore, power rating of the SEPIC parallel converters is a fraction of the output power, on the range of 20% to 33% of the nominal output power, making the proposed solution economically viable for high power installations, with fast pay back of the investment. Moreover, retrofits to existing installations are also possible with this proposed topology, since the parallel path can be easily controlled by integration with the already existing de-link. Experimental results are presented for a 3 kW implemented prototype, in order to verify the developed analysis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper it is proposed a novel hybrid three-phase rectifier capable to achieve high input power factor (PF), and low total harmonic distortion in the input currents (THDI). The proposed hybrid high power rectifier is composed by a standard three-phase 6-pulses diode rectifier (Graetz bridge) with a parallel connection of single-phase Boost rectifiers in each three-phase rectifier leg. Such topology results in a structure capable of programming the input current waveform and providing conditions for obtaining high input power factor and low harmonic current distortion. In order to validate the proposed hybrid rectifier, this paper describes its principles of operation, with detailed experimental results and discussions on power rating of the required Boost converters as related to the desired total harmonic current distortion. It is demonstrated that only a fraction of the output power is processed through the Boost converters, making the proposed solution economically viable for very high power installations, with fast pay back of the investment. Moreover, retrofitting to existing installations is also feasible since the parallel path can be easily controlled by integration with the existing de-link. A prototype rated at 6 kW has been implemented in laboratory and fully demonstrated its operation, performance and feasibility to high power applications. © 2005 IEEE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper is proposed and analyzed a digital hysteresis modulation using a FPGA (Field Programmable Gate Array) device and VHDL (Hardware Description Language), applied at a hybrid three-phase rectifier with almost unitary input power factor, composed by parallel SEPIC controlled single-phase rectifiers connected to each leg of a standard 6-pulses uncontrolled diode rectifier. The digital control allows a programmable THD (Total Harmonic Distortion) at the input currents, and it makes possible that the power rating of the switching-mode converters, connected in parallel, can be a small fraction of the total average output power, in order to obtain a compact converter, reduced input current THD and almost unitary input power factor. The proposed digital control, using a FPGA device and VHDL, offers an important flexibility for the associated control technique, in order to obtain a programmable PFC (Power Factor Correction) hybrid three-phase rectifier, in agreement with the international standards (IEC, and IEEE), which impose limits for the THD of the AC (Alternate Current) line input currents. Finally, the proposed control strategy is verified through experimental results from an implemented prototype. ©2008 IEEE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper is proposed and analyzed a digital hysteresis modulation using a FPGA (Field Programmable Gate Array) device and VHDL (Hardware Description Language), applied at a hybrid three-phase rectifier with almost unitary input power factor, composed by parallel SEPIC controlled single-phase rectifiers connected to each leg of a standard 6-pulses uncontrolled diode rectifier. The digital control allows a programmable THD (Total Harmonic Distortion) at the input currents, and it makes possible that the power rating of the switching-mode converters, connected in parallel, can be a small fraction of the total average output power, in order to obtain a compact converter, reduced input current THD and almost unitary input power factor. Finally, the proposed digital control, using a FPGA device and VHDL, offers an important flexibility for the associated control technique, in order to obtain a programmable PFC (Power Factor Correction) hybrid three-phase rectifier, in agreement with the international standards (IEC, and IEEE), which impose limits for the THD of the AC (Alternate Current) line input currents. The proposed strategy is verified by experiments. © 2008 IEEE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Urban centers have a huge demand for electricity and the growing problem of the solid waste management generated by their population, a relevant social and administrative problem. The correct disposal of the municipal solid waste (MSW) generated in cities is one of the most complex engineering problems that involves logistics, safety, environmental and energetic aspects for its adequate management. Due to a national policy of solid wastes recently promulgated, Brazilian cities are evaluating the technical and economic feasibility of incinerating the non-recyclable waste. São José dos Campos, a São Paulo State industrialized city, is considering the composting of organic waste for biogas production and mass incineration of non-recyclable waste. This paper presents a waste-to-energy system based on the integration of gas turbines to a MSW incinerator for producing thermal and electric energy as an alternative solution for the solid waste disposal in São José dos Campos, SP. A technical and economic feasibility study for the hybrid combined cycle plant is presented and revealed to be attractive when carbon credit and waste tax are included in the project income. © 2013 Elsevier Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hybrid system micro-generation integration of PV-wind power is presented by a form of energy in which problems resulting from variability in the intensity of wind and solar intensity are possible mitigation either by complementation between one source to another or the largest stability configured by the generate the system. Based on this context, this work aims to assessing the performance of a hybrid system PV-wind power energy small of a rural property for their electrification. The study has been developed at the Rural Laboratory Powering from Engineering Department of UNESP. In order to present this research, a hybrid system has been installed PV-wind power, composed of one 400Wp windmill and a 300 Wp PV-system. The results obtained allowed us to evaluate the solar and wind energy supplied ranked among 285 and 360 kWh electric power generated by the PV-wind power hybrid system stood between 25,5 and 31 kWh. At is to say achieving yield of approximately than 10% during one year observation period, i.e., it was concluded that the performance of the hybrid system depended essentially the energy received and generated by the PV-system and that there was complementation between generating wind power and PV-systems with regard to time of day and the annual seasons by confirming the technical feasibility of this kind system of micro-generation in small rural properties.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nel panorama motoristico ed automobilistico moderno lo sviluppo di motori a combustione interna e veicoli è fortemente influenzato da diverse esigenze che spesso sono in contrasto le une con le altre. Infatti gli obiettivi di economicità e riduzione dei costi riguardanti la produzione e la commercializzazione dei prodotti sono in contrasto con gli sforzi che devono essere operati dalle case produttrici per soddisfare le sempre più stringenti normative riguardanti le emissioni inquinanti ed i consumi di carburante dei veicoli. Fra le numerose soluzioni presenti i veicoli ibridi rappresentano una alternativa che allo stato attuale è già presente sul mercato in varie forme, a seconda della tipologie di energie accoppiate. In letteratura è possibile trovare numerosi studi che trattano l’ottimizzazione dei componenti o delle strategie di controllo di queste tipologie di veicoli: in moltissimi casi l’obiettivo è quello di minimizzare consumi ed emissioni inquinanti. Normalmente non viene posta particolare attenzione agli effetti che l’aggiunta delle macchine elettriche e dei componenti necessari per il funzionamento delle stesse hanno sulla dinamica del veicolo. Il presente lavoro di tesi è incentrato su questi aspetti: si è considerata la tipologia di veicoli ibridi termici-elettrici di tipo parallelo andando ad analizzare come cambiasse il comportamento dinamico del veicolo in funzione del tipo di installazione considerato per la parte elettrica del powertrain. In primo luogo è stato quindi necessario costruire ed implementare un modello dinamico di veicolo che permettesse di applicare coppie alle quattro ruote in maniera indipendente per considerare diverse tipologie di powertrain. In seguito si sono analizzate le differenze di comportamento dinamico fra il veicolo considerato e l’equivalente versione ibrida e i possibili utilizzi delle macchine elettriche per correggere eventuali deterioramenti o cambiamenti indesiderati nelle prestazioni del veicolo.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis aims to fill the gap in the literature by examining the relationship between technological trajectories and environmental policy in the automotive industry, focusing on the role of environmental policies in unlocking the industry from fossil fuel path-dependence. It first explores the inducement mechanism that underpins the interaction between environmental policy and green technological advances, investigating under what conditions the European environmental transport policy portfolio and the intrinsic characteristics of assignees' knowledge boost worldwide green patent production. Subsequently, the thesis empirically analyses the dynamics of technological knowledge involved in technological trajectories assessing evolution patterns such as variation, selection and retention, in order to study the impact of policy implementation on technological knowledge related to electric and hybrid vehicle technologies. Finally, the thesis sheds light on the drivers that encourage a shift from incumbent internal combustion engine technologies towards low-emission vehicle technologies. This analysis tests whether tax-inclusive fuel prices and technological proximity between technological fields induce a shift from non-environmental inventions to environmentally friendly inventive activities and if they impact the competition between alternative vehicle technologies. The findings provide insights into the effectiveness of environmental policy in triggering inventive activities related to the development of alternative vehicle technologies. In addition, there is evidence that environmental policy redirects technological efforts towards a sustainable path and impacts the competition between low-emission vehicles.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis deals with the investigation of exciton and charge dynamics in hybrid solar cells by time-resolved optical spectroscopy. Quasi-steady-state and transient absorption spectroscopy, as well as time-resolved photoluminescence spectroscopy, were employed to study charge generation and recombination in solid-state organic dye-sensitized solar cells, where the commonly used liquid electrolyte is replaced by an organic solid hole transporter, namely 2,2′7,7′-tetrakis-(N,N-di-p-methoxyphenyl-amine)-9,9′-spirobifluorene (spiro-MeOTAD), and polymer-metal oxide bulk heterojunction solar cells, where the commonly used fullerene acceptor [6,6]-phenyl C61 butyric acid methyl ester (PCBM) is replaced by zinc oxide (ZnO) nanoparticles. By correlating the spectroscopic results with the photovoltaic performance, efficiency-limiting processes and processes leading to photocurrent generation in the investigated systems are revealed. rnIt is shown that the charge generation from several all-organic donor-π-bridge-acceptor dyes, specifically perylene monoimide derivatives, employed in solid-state dye-sensitized solar cells, is strongly dependent on the presence of a commonly used additive lithium bis(trifluoromethanesulphonyl)imide salt (Li-TFSI) at the interface. rnMoreover, it is shown that charges can not only be generated by electron injection from the excited dye into the TiO2 acceptor and subsequent regeneration of the dye cation by the hole transporter, but also by an alternative mechanism, called preceding hole transfer (or reductive quenching). Here, the excited dye is first reduced by the hole transporter and the thereby formed anion subsequently injects an electron into the titania. This additional charge generation process, which is only possible for solid hole transporters, helps to overcome injection problems. rnHowever, a severe disadvantage of solid-state dye-sensitized solar cells is re-vealed by monitoring the transient Stark effect on dye molecules at the inter-face induced by the electric field between electrons and holes. The attraction between the negative image charge present in TiO2, which is induced by the positive charge carrier in the hole transporter due to the dielectric contrast between the organic spiro-MeOTAD and inorganic titania, is sufficient to at-tract the hole back to the interface, thereby increasing recombination and suppressing the extraction of free charges.rnBy investigating the effect of different dye structures and physical properties on charge generation and recombination, design rules and guidelines for the further advancement of solid-state dye-sensitized solar cells are proposed.rnFinally, a spectroscopic study on polymer:ZnO bulk heterojunction hybrid solar cells, employing different surfactants attached to the metal oxide nanoparticles, was performed to understand the effect of surfactants upon photovoltaic behavior. By applying a parallel pool analysis on the transient absorption data, it is shown that suppressing fast recombination while simultaneously maintaining the exciton splitting efficiency by the right choice of surfactants leads to better photovoltaic performances. Suppressing the fast recombination completely, whilst maintaining the exciton splitting, could lead to a doubling of the power conversion efficiency of this type of solar cell.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Thermo-responsive materials have been of interest for many years, and have been studied mostly as thermally stimulated drug delivery vehicles. Recently acrylate and methacrylates with pendant ethylene glycol methyl ethers been studied as thermo responsive materials. This work explores thermo response properties of hybrid nanoparticles of one of these methacrylates (DEGMA) and a block copolymer with one of the acrylates (OEGA), with gold nanoparticle cores of different sizes. We were interested in the effects of gold core size, number and type of end groups that anchored the chains to the gold cores, and location of bonding sites on the thermo-response of the polymer. To control the number and location of anchoring groups we using a type of controlled radical polymerization called Reversible Addition Fragmentation Transfer (RAFT) Polymerization. Smaller gold cores did not show the thermo responsive behavior of the polymer but the gold cores did seem to self-assemble. Polymer anchored to larger gold cores did show thermo responsivity. The anchoring end group did not alter the thermoresponsivity but thiol-modified polymers stabilized gold cores less well than chains anchored by dithioester groups, allowing gold cores to grow larger. Use of multiple bonding groups stabilized the gold core. Using block copolymers we tested the effects of number of thiol groups and the distance between them. We observed that the use of multiple anchoring groups on the block copolymer with a sufficiently large gold core did not prevent thermo responsive behavior of the polymer to be detected which allows a new type of thermo-responsive hybrid nanoparticle to be used and studied for new applications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We study the interaction between a magnetic dipole mimicking the Gerasimovich magnetic anomaly on the lunar surface and the solar wind in a self-consistent 3-D quasi-neutral hybrid simulation where ions are modeled as particles and electrons as a charge-neutralizing fluid. Especially, we consider the origin of the recently observed electric potentials at lunar magnetic anomalies. An antimoonward Hall electric field forms in our simulation resulting in a potential difference of <300V on the lunar surface, in which the value is similar to observations. Since the hybrid model assumes charge neutrality, our results suggest that the electric potentials at lunar magnetic anomalies can be formed by decoupling of ion and electron motion even without charge separation.