921 resultados para Hot-water heating


Relevância:

80.00% 80.00%

Publicador:

Resumo:

agricultural, pharmaceutical, cosmetic or bioenergy applications. They contain bioactive compounds, namely, polysaccharides Fucoidan. These polysaccharides are mainly constituted by fucose residues and sulfate esters, and have been reported to possess a broad variety of bioactivities, such as anticoagulant, anti-thrombotic, anti-inflammatory, anti-tumor, antiviral and antioxidant. In this work, the fucoidans from brown seaweed Fucus vesiculosus from “Ria de Aveiro” were isolated and characterized in order to add value to this natural resource of the region. The polysaccharides from the algae were extracted with hot water and fractioned by ethanol precipitation and calcium chloride salts. They were further purified by using anion-exchange chromatography, allowing to separate the neutral polysaccharides (laminaranas) from those negatively charged (sulfated fucoidans and alginate). The purified polysaccharides showed high content of fucose (41 mol%) and sulfates (50 mol%), having also galactose residues (6 mol%), which confirm the presence of only sulfated fucoidans. Glycosidic linkages analysis show the presence of high amounts of terminal fucose (25%) and (1→3,4)-Fuc (26%), allowing to infer that the fucoidans were highly branched. These fucoidans are composed also by (1→2)-Fuc (14%) and (1→3)-Fuc linkages (10-16%). In this work it was also tested an alternative extraction technology, the microwave hydrodiffusion and gravity system, where it was possible to extract sugars, although in low yields. However, this methodology allowed to extract polysaccharides, constituted mainly by fucose and uronic acids, as well as mannitol, without the need to add any solvent, obtaining at the end the dry alga. The current work allowed to characterize the structure of the fucoidans isolated from “Ria de Aveiro” F. vesiculosus. The presence of high content of sulfate residues and the high branch degree of the purified fucoidans allow to infer that these polysaccharides could have potential to be studied for biomedical applications, according to their biological activities.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The selective solar absorber surface is a fundamental part of a solar thermal collector, as it is responsible for the solar radiation absorption and for reduction of radiation heat losses. The surface’s optical properties, the solar absorption (á) and the emittance (å), have great impact on the solar thermal collector efficiency. In this work, two coatings types were studied: coatings obtained by physical vapor deposition (PVDs) and coatings obtained by projection with different paints (PCs) on aluminum substrates. The most common industrial high performing solar selective absorbers are nowadays produced by vacuum deposition methods, showing some disadvantages, such as lower durability, lower resistance to corrosion, adhesion and scratch, higher cost and complex production techniques. Currently, spectrally selective paints are a potential alternative for absorbing surfaces in low temperature applications, with attractive features such as ease of processing, durability and commercial availability with low cost. Solar absorber surfaces were submitted to accelerated ageing tests, specified in ISO 22975-3. This standard is applicable to the evaluation of the long term behavior and service life of selective solar absorbers for solar collectors working under typical domestic hot water system conditions. The studied coatings have, in the case of PVDs solar absorptions between 0.93 and 0.96 and emittance between 0.07 and 0.10, and in the case of PCs, solar absorptions between 0.91 and 0.93 and emittance between 0.40 and 0.60. In addition to evaluating long term behavior based on artificial ageing tests, it is also important to know the degradation mechanism of different coatings that are currently in the market. Electrochemical impedance spectroscopy (EIS) allows for the assessment of mechanistic information concerning the degradation processes, providing quantitative data as output, which can easily relate to the kinetic parameters of the system. EIS measures were carried out on Gamry FAS2 Femostat coupled with a PCL4 Controller. Two electrolytes were used, 0.5 M NaCl and 0.5 M Na2SO4, and the surfaces were tested at different immersion times up to 4 weeks. The following types of specimens have been tested: Aluminium with/without surface treatment, 3 selective paint coatings (one with a poly(urethane) binder and two with silicone binders) and 2 PVD coatings. Based on the behaviour of the specimens throughout the 4 weeks of immersion, it is possible to conclude that the coating showing the best protective properties corresponds to the selective paint coating with a polyurethane resin followed by the other paint coatings, whereas both the PVD coatings do not confer any protection to the substrate, having a deleterious effect as compared to the untreated aluminium reference.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

How can we control the experimental conditions towards the isolation of specific structures? Why do particular architectures form? These are some challenging questions that synthetic chemists try to answer, specifically within polyoxometalate (POM) chemistry, where there is still much unknown regarding the synthesis of novel molecular structures in a controlled and predictive manner. This work covers a wide range of POM chemistry, exploring the redox self-assembly of polyoxometalate clusters, using both “one-pot”, flow and hydrothermal conditions. For this purpose, different vanadium, molybdenum and tungsten reagents, heteroatoms, inorganic salts and reducing agents have been used. The template effect of lone-pair containing pyramidal heteroatoms has been investigated. Efforts to synthesize new POM clusters displaying pyramidal heteroanions (XO32-, where X= S, Se, Te, P) are reported. The reaction of molybdenum with vanadium in the presence of XO32- heteroatoms is explored, showing how via the cation and experimental control it is possible to direct the self-assembly process and to isolate isostructural compounds. A series of four isostructural (two new, namely {Mo11V7P} and {Mo11V7Te} and two already known, namely {Mo11V7Se} and {Mo11V7S} disordered egg-shaped Polyoxometalates have been reported. The compounds were characterized by X-ray structural analysis, TGA, UV-Vis, FT-IR, Elemental and Flame Atomic Absorption Spectroscopy (FAAS) analysis and Inductively Coupled Plasma Optical Emission Spectroscopy (ICP-OES). Cyclic Voltammetry measurements have been carried out in all four compounds showing the effect of the ionic density of the heteroatom on the potential. High-Resolution ESI-MS studies have revealed that the structures retain their integrity in solution. Efforts to synthesize new mixed-metal compounds led to isolation, structural, and electronic characterization of the theoretically predicted, but experimentally elusive δ-isomer of the Keggin polyoxometalate cluster anion, {H2W4V9O33(C6H13NO3)}, by the reaction of tungstate(VI) and vanadium(V) with triethanolammonium ions (TEAH), acting as a tripodal ligand grafted to the surface of the cluster. Control experiments (in the absence of the organic compound) have proven that the tripodal ligand plays crucial role on the formation of the isomer. The six vanadium metal centres, which consist the upper part of the cluster, are bonded to the “capping” TEA tripodal ligand. This metal-ligand bonding directs and stabilises the formation of the final product. The δ-Keggin species was characterized by single-crystal X-ray diffraction, FT-IR, UV-vis, NMR and ESI-MS spectrometry. Electronic structure and structure-stability correlations were evaluated by means of DFT calculations. The compounds exhibited photochromic properties by undergoing single-crystal-to-single-crystal (SC-SC) transformations and changing colour under light. Non-conventional synthetic approaches are also used for the synthesis of the POM clusters comparing the classical “one-pot” reaction conditions and exploring the synthetic parameters of the synthesis of POM compounds. Reactions under hydrothermal and flow conditions, where single crystals that depend on the solubility of the minerals under hot water and high pressure can be synthesized, resulted in the isolation of two isostructural compounds, namely, {Mo12V3Te5}. The compound isolated from a continuous processing method, crystallizes in a hexagonal crystal system, forming a 2D porous plane net, while the compound isolated using hard experimental conditions (high temperature and pressure) crystallizes in monoclinic system, resulting in a different packing configuration. Utilizing these alternative synthetic approaches, the most kinetically and thermodynamically compounds would possibly be isolated. These compounds were characterised by single-crystal X-ray diffraction, FT-IR and UV-vis spectroscopy. Finally, the redox-controlled driven oscillatory template exchange between phosphate (P) and vanadate (V) anions enclosed in an {M18O54(XO4)2} cluster is further investigated using UV-vis spectroscopy as a function of reaction time, showed that more than six complete oscillations interconverting the capsule species present in solution from {P2M18} to {V2M18} were possible, provided that a sufficient concentration of the TEA reducing agent was present in solution. In an effort to investigate the periodicity of the exchange of the phosphate and vanadate anions, time dependent Uv-vis measurements were performed for a period at a range of 170-550 hours. Different experimental conditions were also applied in order to investigate the role of the reducing agent, as well as the effect of other experimental variables on the oscillatory system.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Salvia species are used worldwide for medicine purposes. In general, these medicinal plants have high amounts of flavonoids and phenolic acids, that are thought to be closely related to their health properties [1,2]. In this work, the aerial parts of Salvia farinacea, Salvia mexico, Salvia greggii and Salvia officinalis were extracted with hot water [3]. Extracts were evaluated for their total phenolic content by an adaptation of the Folin-Ciocalteu method and further analysed by high performance liquid chromatography associated with electrospray mass spectrometry (HPLC-DAD-ESI-MSn) in the negative ion mode [4], in order to identify their individual phenolic constituents. The aqueous extracts of S. farinacea, S. mexico, S. officinalis and S. greggii contained, respectively, 106±13, 159±38, 175±46 and 136±1 μg GAE/mg of total phenolics. These four species were characterized by a clear prevalence of caffeic acid derivatives, in particular of rosmarinic acid (MW 360), that is generally the most abundant phenolic compound in Salvia species [2,3]. In addition, S. mexico and S. officinalis contained moderate amounts of salvianolic acid B (MW 718). Among these two, S. mexico was richer in O-caffeoylquinic acid (MW 354), while the latter presented high amounts of salvianolic acid K (MW 556) and moderate amounts of its structural isomer. All the extracts were enriched in flavones: S. farinacea and S. officinalis contained high amounts of luteolin-O-glucuronide while S. mexico contained luteolin-C-glucoside with respective characteristic mass spectrometry fragmentation pattern m/z at 461→285 and m/z at 447→357, 327. Similarly, S. greggii extract presented high content of luteolin-7-O-glucoside ([M-H]− at m/z 447→ 285) and luteolin-C-glucoside and moderate quantities of apigenin-C-hexoside ([M-H]− at m/z 431→341, 311). Further studies are being undertaken in order to understand the contribution of these phenolic constituents in the biological activities of Salvia plants.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Salvia species are used worldwide for medicine purposes. In general, these medicinal plants have high amounts of flavonoids and phenolic acids, that are thought to be closely related to their health properties [1,2]. In this work, the aerial parts of Salvia farinacea, Salvia mexico, Salvia greggii and Salvia officinalis were extracted with hot water [3]. Extracts were evaluated for their total phenolic content by an adaptation of the Folin-Ciocalteu method and further analysed by high performance liquid chromatography associated with electrospray mass spectrometry (HPLC-DAD-ESI-MSn) in the negative ion mode [4], in order to identify their individual phenolic constituents. The aqueous extracts of S. farinacea, S. mexico, S. officinalis and S. greggii contained, respectively, 106±13, 159±38, 175±46 and 136±1 μg GAE/mg of total phenolics. These four species were characterized by a clear prevalence of caffeic acid derivatives, in particular of rosmarinic acid (MW 360), that is generally the most abundant phenolic compound in Salvia species [2,3]. In addition, S. mexico and S. officinalis contained moderate amounts of salvianolic acid B (MW 718). Among these two, S. mexico was richer in O-caffeoylquinic acid (MW 354), while the latter presented high amounts of salvianolic acid K (MW 556) and moderate amounts of its structural isomer. All the extracts were enriched in flavones: S. farinacea and S. officinalis contained high amounts of luteolin-O-glucuronide while S. mexico contained luteolin-C-glucoside with respective characteristic mass spectrometry fragmentation pattern m/z at 461→285 and m/z at 447→357, 327. Similarly, S. greggii extract presented high content of luteolin-7-O-glucoside ([M-H]− at m/z 447→ 285) and luteolin-C-glucoside and moderate quantities of apigenin-C-hexoside ([M-H]− at m/z 431→341, 311). Further studies are being undertaken in order to understand the contribution of these phenolic constituents in the biological activities of Salvia plants.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Vast montado areas are threatened by degradation, as the result of a long history of land use changes. Since improved pastures have been installed aiming soil quality improvement and system sustainability, it is crucial to evaluate the effects of these management changes on soil organic matter status and soil biological activity, as soil quality indicators. Therefore, a 35-yr old improved pasture and a natural pasture were studied, considering areas beneath tree canopy and in the open. Total organic C, total N, hot water soluble (HWS) and particulate (POM) C, microbial biomass C (MBC) and N (MBN), C mineralization rate (CMR) and net N mineralization rate (NMR) were determined. In addition, for a 1-yr period, soil β-glucosidase, urease, proteases and acid phosphomonoesterase were periodically determined. Improved pasture promoted the increase of soil C and N through POM-C increment, particularly beneath the trees canopies. The two study pastures did not show differences regarding soil microbial biomass, but variations in CMR, HWS-C and N availability (proteases and urease activities) suggest divergent soil microbial communities. Tree regulator role on C, N and P transformation processes in soil was confirmed

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Mestrado em Engenharia Florestal e dos Recursos Naturais - Instituto Superior de Agronomia - UL

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Dissertação de Mestrado, Energias Renováveis e Gestão de Energia, Faculdade de Ciências e Tecnologia, Universidade do Algarve, 2016

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Irish brown seaweeds have been identified as a potential bio-resource with potentially high specific methane yields. Anaerobic digestion is deemed the most feasible technology due to its commercial viability for handling such wet feedstock. However, the biomethane potential of seaweed is highly dependent on its chemical composition which can vary by species type, cultivation method, and time of harvest. This study aims to investigate and optimize the process for the production of biomethane from Irish brown seaweeds focusing on the key technology bottlenecks including for seaweed characterization, biomethane potential assessment, optimization of long-term anaerobic digestion and suitable pre-treatment technologies to enhance potential gas yields. Laminaria digitata and Ascophyllum nodosum were tested for seasonal variation. From the characterization and batch digestion of L. digitata, August was found to be the optimal month for harvest due to high organic matter content, low level of ash and ultimately highest biomethane yield. The specific methane yield of 53 m3 CH4 t-1 wwt in August was 4.5 times higher than the yield in December (12 m3 CH4 t-1 wwt), with ash content the key factor in seasonal variation. For A. nodosum, the optimal harvest month was October with polyphenol content found to be a more influential factor than ash. The gross energy yields from both species were evaluated in the range of 116-200 GJ ha-1 yr-1. Continuous digestion trials were subsequently designed for S. latissima and L. digitata to optimize the key digestion parameters. Results from mono-digestion and co-digestion with dairy slurry revealed that both seaweeds could be digested at maximum biomethane efficiency to a loading rate of 4 kg VS m-3 d-1. Accumulation of salt in the digesters was a concern for long term digestion and it was reasoned that suitable pretreatment may be required prior to digestion. Various pre-treatments were subsequently tested on L. digitata to enhance the gas yield. It was found that maceration after hot water washing yielded 25% more specific methane and up to 54% salt removal as compared to untreated L. digitata. The experiments undertaken aim to assist in providing a basic guideline for feasible design and operation of seaweed digesters in Ireland.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

La présente étude avait pour objectif de contribuer à une meilleure compréhension de la granulation des bois feuillus par l’évaluation de la possibilité technique de transformer des bois feuillus de faible vigueur (l’érable à sucre et le bouleau jaune) en granules conventionnels et granules de haute qualité, un type prometteur de transport énergétique. Trois études individuelles ont été réalisées et présentées dans cette thèse. La première étude visait à déterminer s’il y a des changements de teneur en extractibles, cendres, et lignine du bois entre les classes de vigueur des arbres. Les teneurs plus élevées en extractibles et en lignine dans les arbres peu vigoureux ont suggéré que ces derniers sont plus appropriés par rapport aux arbres vigoureux pour la conversion en biocombustibles solides. La deuxième étude visait à optimiser des procédés de granulation des bois feuillus. L’étude a porté sur l’influence des paramètres du procédé (la température et la force de compression) et des caractéristiques de la matière première (la taille des particules et la teneur en humidité) sur les propriétés physiques et mécaniques des granules de bois. Le procédé de granulation doit être effectué à une température d’environ 100 °C pour minimiser la force de friction dans le granulateur et à une teneur en humidité d’environ 11,2% pour maximiser la masse volumique et la résistance mécanique des granules produites. Cette étude a également confirmé que les arbres de faible qualité sont plus appropriés pour la fabrication de granules de bois que les arbres vigoureux. La troisième étude visait l’élaboration de granules de haute qualité. L’eau chaude à température élevée a été utilisée pour modifier les propriétés de la matière première avant granulation. Les caractéristiques de granulation du matériau traité ont été significativement améliorées. Les granules produites ont montré des propriétés améliorées incluant une plus faible teneur en cendres, une plus haute densité énergétique, une meilleure résistance à l’eau, et une meilleure résistance mécanique. Les résultats obtenus de toutes ces études ont démontré la nécessité de bien connaître les fondements de la granulation des bois feuillus et les solutions pratiques pour l’utilisation d’arbres feuillus de faible qualité, le premier peut être applicable pour le développement de procédés de granulation et le dernier peut contribuer à long terme à la restauration des forêts feuillues dégradées en termes de santé des forêts et de leur valeur.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

The common appearance of hygroscopic brine (“sweating”) on ordinary chondrites (OCs) from Oman during storage under room conditions initiated a study on the role of water-soluble salts on the weathering of OCs. Analyses of leachates from OCs and soils, combined with petrography of alteration features and a 11-month record of in situ meteorite and soil temperatures, are used to evaluate the role of salts in OC weathering. Main soluble ions in soils are Ca2+, SO42−, HCO3−, Na+, and Cl−, while OC leachates are dominated by Mg2+ (from meteoritic olivine), Ca2+ (from soil), Cl− (from soil), SO42− (from meteoritic troilite and soil), and iron (meteoritic). “Sweating meteorites” mainly contain Mg2+ and Cl−. The median Na/Cl mass ratio of leachates changes from 0.65 in soils to 0.07 in meteorites, indicating the precipitation of a Na-rich phase or loss of an efflorescent Na-salt. The total concentrations of water-soluble ions in bulk OCs ranges from 600 to 9000 μg g−1 (median 2500 μg g−1) as compared to 187–14140 μg g−1 in soils (median 1148 μg g−1). Soil salts dissolved by rain water are soaked up by meteorites by capillary forces. Daily heating (up to 66.3 °C) and cooling of the meteorites cause a pumping effect, resulting in a strong concentration of soluble ions in meteorites over time. The concentrations of water-soluble ions in meteorites, which are complex mixtures of ions from the soil and from oxidation and hydrolysis of meteoritic material, depend on the degree of weathering and are highest at W3. Input of soil contaminants generally dominates over the ions mobilized from meteorites. Silicate hydrolysis preferentially affects olivine and is enhanced by sulfide oxidation, producing local acidic conditions as evidenced by jarosite. Plagioclase weathering is negligible. After completion of troilite oxidation, the rate of chemical weathering slows down with continuing Ca-sulfate contamination.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The thermal analysis of euchroite shows two mass loss steps in the temperature range 100 to 105°C and 185 to 205°C. These mass loss steps are attributed to dehydration and dehydroxylation of the mineral. Hot stage Raman spectroscopy (HSRS) has been used to study the thermal stability of the mineral euchroite, a mineral involved in a complex set of equilibria between the copper hydroxy arsenates: euchroite Cu2(AsO4)(OH).3H2O → olivenite Cu2(AsO4)(OH) → strashimirite Cu8(AsO4)4(OH)4.5H2O → arhbarite Cu2Mg(AsO4)(OH)3. Hot stage Raman spectroscopy inolves the collection of Raman spectra as a function of the temperature. HSRS shows that the mineral euchroite decomposes between 125 and 175 °C with the loss of water. At 125 °C, Raman bands are observed at 858 cm-1 assigned to the ν1 AsO43- symmetric stretching vibration and 801, 822 and 871 cm-1 assigned to the ν3 AsO43- (A1) antisymmetric stretching vibration. A distinct band shift is observed upon heating to 275 °C. At 275 °C the four Raman bands are resolved at 762, 810, 837 and 862 cm-1. Further heating results in the diminution of the intensity in the Raman spectra and this is attributed to sublimation of the arsenate mineral. Hot stage Raman spectroscopy is most useful technique for studying the thermal stability of minerals especially when only very small amounts of mineral are available.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Boundary layer flow visualization in water with surface heat transfer was carried out on a body of revolution which had the predicted possibility of laminar separation under isothermal conditions. Flow visualization was by in-line holographic technique. Boundary layer stabilization, including elimination of laminar separation, was observed to take place on surface heating. Conversely, boundary layer destabilization was observed on surface cooling. These findings are consistent with the theoretical predictions of Wazzan et al. in The stability and transition of heated and cooled incompressible laminar boundary layers, in Proceedings of the Fourth International Heat Transfer Conference, Vol. 2, FCI 4. Elsevier, Amsterdam (1970).

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Shortly after the loading of a pressurized water reactor (PWR) core, the axial power distribution in fresh fuel has already attained the characteristic, almost flat shape, typical of burned fuel. At beginning of cycle (BOC), however, the axial distribution is centrally peaked. In assemblies hosting uniform burnable boron rods, this BOC peaking is even more pronounced. A reduction in the axial peaking is today often achieved by shortening the burnable boron rods by some 30 cm at each edge. It is shown that a two-zone grading of the boron rod leads, in a representative PWR cycle, to a reduction of the hot-spot temperature of approximately 70 °C, compared with the nongraded case. However, with a proper three-zone grading of the boron rod, an additional 20 °C may be cut off the hot-spot temperature. Further, with a slightly skewed application of this three-zone grading, an additional 50 °C may be cut off. The representative PWR cycle studied was cycle 11 of the Indian Point 2 station, with a simplification in the number of fuel types and in the burnup distribution. The analysis was based on a complete three-dimensional burnup calculation. The code system was ELCOS, with BOXER as an assembly code for the generation of burnup-dependent cross sections and SILWER as a three-dimensional core code with thermal-hydraulic feedback.