969 resultados para Histocompatibility Antigens Class I
Resumo:
Mutant mice where tyrosine 136 of linker for activation of T cells (LAT) was replaced with a phenylalanine (Lat(Y136F) mice) develop a fast-onset lymphoproliferative disorder involving polyclonal CD4 T cells that produce massive amounts of Th2 cytokines and trigger severe inflammation and autoantibodies. We analyzed whether the Lat(Y136F) pathology constitutes a bona fide autoimmune disorder dependent on TCR specificity. Using adoptive transfer experiments, we demonstrated that the expansion and uncontrolled Th2-effector function of Lat(Y136F) CD4 cells are not triggered by an MHC class II-driven, autoreactive process. Using Foxp3EGFP reporter mice, we further showed that nonfunctional Foxp3(+) regulatory T cells are present in Lat(Y136F) mice and that pathogenic Lat(Y136F) CD4 T cells were capable of escaping the control of infused wild-type Foxp3(+) regulatory T cells. These results argue against a scenario where the Lat(Y136F) pathology is primarily due to a lack of functional Foxp3(+) regulatory T cells and suggest that a defect intrinsic to Lat(Y136F) CD4 T cells leads to a state of TCR-independent hyperactivity. This abnormal status confers Lat(Y136F) CD4 T cells with the ability to trigger the production of Abs and of autoantibodies in a TCR-independent, quasi-mitogenic fashion. Therefore, despite the presence of autoantibodies causative of severe systemic disease, the pathological conditions observed in Lat(Y136F) mice unfold in an Ag-independent manner and thus do not qualify as a genuine autoimmune disorder.
Resumo:
The cytokine BAFF binds to the receptors TACI, BCMA, and BAFF-R on B cells, whereas APRIL binds to TACI and BCMA only. The signaling properties of soluble trimeric BAFF (BAFF 3-mer) were compared with those of higher-order BAFF oligomers. All forms of BAFF bound BAFF-R and TACI, and elicited BAFF-R-dependent signals in primary B cells. In contrast, signaling through TACI in mature B cells or plasmablasts was only achieved by higher-order BAFF and APRIL oligomers, all of which were also po-tent activators of a multimerization-dependent reporter signaling pathway. These results indicate that, although BAFF-R and TACI can provide B cells with similar signals, only BAFF-R, but not TACI, can respond to soluble BAFF 3-mer, which is the main form of BAFF found in circulation. BAFF 60-mer, an efficient TACI agonist, was also detected in plasma of BAFF transgenic and nontransgenic mice and was more than 100-fold more active than BAFF 3-mer for the activation of multimerization-dependent signals. TACI supported survival of activated B cells and plasmablasts in vitro, providing a rational basis to explain the immunoglobulin deficiency reported in TACI-deficient persons.
Resumo:
Thirty monoclonal antibodies from eight laboratories exchanged after the First Workshop on Monoclonal Antibodies to Human Melanoma held in March 1981 at NIH were tested in an antibody-binding radioimmunoassay using a panel of 28 different cell lines. This panel included 12 melanomas, three neuroblastomas, four gliomas, one retinoblastoma, four colon carcinomas, one lung carcinoma, one cervical carcinoma, one endometrial carcinoma, and one breast carcinoma. The reactivity pattern of the 30 monoclonal antibodies tested showed that none of them were directed against antigens strictly restricted to melanoma, but that several of them recognize antigenic structures preferentially expressed on melanoma cells. A large number of antibodies were found to crossreact with gliomas and neuroblastomas. Thus, they seem to recognize neuroectoderm associated differentiation antigens. Four monoclonal antibodies produced in our laboratory were further studied for the immunohistological localization of melanoma associated antigens on fresh tumor material. In a three-layer biotin-avidin-peroxidase system each antibody showed a different staining pattern with the tumor cells, suggesting that they were directed against different antigens.
Resumo:
Superantigens (SAg) are proteins of bacterial or viral origin able to activate T cells by forming a trimolecular complex with both MHC class II molecules and the T cell receptor (TCR), leading to clonal deletion of reactive T cells in the thymus. SAg interact with the TCR through the beta chain variable region (Vbeta), but the TCR alpha chain has been shown to have an influence on the T cell reactivity. We have investigated here the role of the TCR alpha chain in the modulation of T cell reactivity to Mtv-7 SAg by comparing the peripheral usage of Valpha2 in Vbeta6(+) (SAg-reactive) and Vbeta8.2(+) (SAg non-reactive) T cells, in either BALB/D2 (Mtv-7(+)) or BALB/c (Mtv-7(-)) mice. The results show, first, that pairing of Vbeta6 with certain Valpha2 family members prevents T cell deletion by Mtv-7 SAg. Second, there is a strikingly different distribution of the Valpha2 family members in CD4 and CD8 populations of Vbeta6 but not of Vbeta8.2 T cells, irrespective of the presence of Mtv-7 SAg. Third, the alpha chain may play a role in the overall stability of the TCR/SAg/MHC complex. Taken together, these results suggest that the Valpha domain contributes to the selective process by its role in the TCR reactivity to SAg/MHC class II complexes, most likely by influencing the orientation of the Vbeta domain in the TCR alphabeta heterodimer.
Resumo:
Nucleotide-binding domain and leucine-rich repeat containing receptors (NLRs) are intracellular proteins mainly involved in pathogen recognition, inflammatory responses, and cell death. Until recently, the function of the family member NLR caspase recruitment domain (CARD) containing 5 (NLRC5) has been a matter of debate. It is now clear that NLRC5 acts as a transcriptional regulator of the major-histocompatibility complex class I. In this review we detail the development of our understanding of NLRC5 function, discussing both the accepted and the controversial aspects of NLRC5 activity. We give insight into the molecular mechanisms, and the potential implications, of NLRC5 function in health and disease.
Resumo:
OBJECTIVES: HLA-B*5701 is a major histocompatibility complex class I allele associated with an immunologically-mediated hypersensitivity reaction to abacavir. The objectives of this study were to evaluate HLA-B*5701 prevalence among European, HIV-1-infected patients and to compare the local and central laboratory screening results. METHODS: Data were combined from six multicentre, prospective studies involving 10 European countries in which HIV-1-infected patients (irrespective of treatment experience or previous HLA-B*5701 screening), >or=18 years of age, were evaluated for HLA-B*5701 carriage, determined by the central and local laboratory methods. RESULTS: A total of 9720 patients from 272 centres were included in the analysis. The overall estimate of HLA-B*5701 prevalence in Europe was 4.98%, with country-specific estimates ranging from 1.53 to 7.75%. HLA-B*5701 prevalence was highest in the self-reported white population (6.49%) and lowest in the black population (0.39%). Local laboratory results had a high specificity (99.9%) and sensitivity (99.2%) when compared with the central laboratory results. CONCLUSION: This study supports data from previous studies regarding the prevalence of HLA-B*5701 in the HIV population and the variation of HLA-B*5701 prevalence between different racial groups. The high specificity and sensitivity of local laboratory results, suggests that clinicians can be confident in using local laboratories for pretreatment HLA-B*5701 screening. However, it is essential that local laboratories participate in HLA-B*5701-specific quality assurance programs to maintain 100% sensitivity. In HIV-infected patients, pretreatment HLA-B*5701 screening may allow more informed decisions regarding abacavir use and has the potential to significantly reduce the frequency of abacavir-related hypersensitivity reactions and costs associated with managing these reactions.
Resumo:
Cancer cell metabolism differs from that of non-transformed cells in the same tissue. This specific metabolism gives tumor cells growing advantages besides the effect in increasing anabolism. One of these advantages is immune evasion mediated by a lower expression of the mayor histocompatibility complex class I molecules. The extracellular-signal-regulated kinase-5 regulates both mayor histocompatibility complex class I expression and metabolic activity. However, the mechanisms underlying are largely unknown. We show here that extracellular-signal-regulated kinase-5 regulates the transcription of the NADH(+)-dependent histone deacetylase silent mating type information regulation 2 homolog 1 (Sirtuin 1) in leukemic Jurkat T cells. This involves the activation of the transcription factor myocyte enhancer factor-2 and its binding to the sirt1 promoter. In addition, extracellular-signal-regulated kinase-5 is required for T cell receptor-induced and oxidative stress-induced full Sirtuin 1 expression. Extracellular-signal-regulated kinase-5 induces the expression of promoters containing the antioxidant response elements through a Sirtuin 1-dependent pathway. On the other hand, down modulation of extracellular-signal-regulated kinase-5 expression impairs the anti-oxidant response. Notably, the extracellular-signal-regulated kinase-5 inhibitor BIX02189 induces apoptosis in acute myeloid leukemia tumor cells without affecting T cells from healthy donors. Our results unveil a new pathway that modulates metabolism in tumor cells. This pathway represents a promising therapeutic target in cancers with deep metabolic layouts such as acute myeloid leukemia.
Resumo:
The use of mammalian gene expression vectors has become increasingly important for genetic immunization and gene therapy as well as basic research. Essential for the success of these vectors in genetic immunization is the proper choice of a promoter linked to the antigen of interest. Many genetic immunization vectors use promoter elements from pathogenic viruses including SV40 and CMV. Lymphokines produced by the immune response to proteins expressed by these vectors could inhibit further transcription initiation by viral promoters. Our objective was to determine the effect of IFN-g on transgene expression driven by viral SV40 or CMV promoter/enhancer and the mammalian promoter/enhancer for the major histocompatibility complex class I (MHC I) gene. We transfected the luciferase gene driven by these three promoters into 14 cell lines of many tissues and several species. Luciferase assays of transfected cells untreated or treated with IFN-g indicated that although the viral promoters could drive luciferase production in all cell lines tested to higher or lower levels than the MHC I promoter, treatment with IFN-g inhibited transgene expression in most of the cell lines and amplification of the MHC I promoter-driven transgene expression in all cell lines. These data indicate that the SV40 and CMV promoter/enhancers may not be a suitable choice for gene delivery especially for genetic immunization or cancer cytokine gene therapy. The MHC I promoter/enhancer, on the other hand, may be an ideal transgene promoter for applications involving the immune system.
Resumo:
Major histocompatibility complex class I chain-related A (MICA) is a highly polymorphic gene located within the MHC class I region of the human genome. Expressed as a cell surface glycoprotein, MICA modulates immune surveillance by binding to its cognate receptor on natural killer cells, NKG2D, and its genetic polymorphisms have been recently associated with susceptibility to some infectious diseases. We determined whether MICA polymorphisms were associated with the high rate of Schistosoma parasitic worm infection or severity of disease outcome in the Dongting Lake region of Hunan Province, China. Polymerase chain reaction-sequence specific priming (PCR-SSP) and sequencing-based typing (SBT) were applied for high-resolution allele typing of schistosomiasis cases (N = 103, age range = 36.2-80.5 years, 64 males and 39 females) and healthy controls (N = 141, age range = 28.6-73.3 years, 73 males and 68 females). Fourteen MICA alleles and five short-tandem repeat (STR) alleles were identified among the two populations. Three (MICA*012:01/02, MICA*017 and MICA*027) showed a higher frequency in healthy controls than in schistosomiasis patients, but the difference was not significantly correlated with susceptibility to S. japonicum infection (Pc > 0.05). In contrast, higher MICA*A5 allele frequency was significantly correlated with advanced liver fibrosis (Pc < 0.05). Furthermore, the distribution profile of MICA alleles in this Hunan Han population was significantly different from those published for Korean, Thai, American-Caucasian, and Afro-American populations (P < 0.01), but similar to other Han populations within China (P > 0.05). This study provides the initial evidence that MICA genetic polymorphisms may underlie the severity of liver fibrosis occurring in schistosomiasis patients from the Dongting Lake region.
Resumo:
Il existe plusieurs défis au développement d’une thérapie visant à stimuler l’immunité cellulaire. Dans la prévention contre certains virus et en immunothérapie du cancer, l’induction de lymphocytes T spécifiques est cependant primordiale. Dans la première partie de l’étude, nous avons porté notre attention sur la compréhension de la présentation croisée par le complexe majeur d’histocompatibilité de classe I (CMH I) médiée par des particules pseudo-virales (VLP) composées de la protéine de surface de potexvirus à laquelle nous avons ajouté un épitope de la protéine M1 du virus de l’influenza ou un épitope de la protéine gp100 du mélanome. Cette VLP se caractérise par sa capacité à stimuler, sans l’aide d’adjuvant, le système immunitaire et de présenter de façon croisée l’épitope inséré dans sa protéine de surface et ce, indépendamment de l’activité du protéasome. Nous avons, tout d’abord, comparé les propriétés de présentation antigénique croisée des VLP formées du virus de la mosaïque de la malva (MaMV) à celles des VLP du virus de la mosaïque de la papaye (PapMV). Les résultats confirment que ces propriétés sont partagées par plusieurs membres de la famille des potexvirus malgré des divergences de séquences (Hanafi et al. Vaccine 2010). De plus, nous avons procédé à des expériences pour préciser le mécanisme menant à la présentation de l’épitope inséré dans les VLP de PapMV. Les résultats nous confirment une voie vacuolaire dépendante de l’activité de la cathepsine S et de l’acidification des lysosomes pour l’apprêtement antigénique. L’induction de l’autophagie par les VLP semble également nécessaire à la présentation croisée par les VLP de PapMV. Nous avons donc établi un nouveau mécanisme de présentation croisée vacuolaire dépendant de l’autophagie (Hanafi et al. soumis Autophagy). En second lieu, en immunothérapie du cancer, il est aussi important de contrôler les mécanismes d’évasion immunitaire mis en branle par la tumeur. Nous avons spécifiquement étudié l’enzyme immunosuppressive indoleamine 2,3-dioxygénase (IDO) (revue de la littérature dans les tumeurs humaines; Hanafi et al. Clin. Can. Res 2011) et son inhibition dans les cellules tumorales. Pour ce faire, nous avons tenté d’inhiber son expression par la fludarabine, agent chimiothérapeutique précédemment étudié pour son activité inhibitrice de l’activation de STAT1 (signal transducers and activators of transcription 1). Étonnamment, nos résultats ont montré l’inhibition d’IDO dans les cellules tumorales par la fludarabine, indépendamment de l’inhibition de la phosphorylation de STAT1. Nous avons démontré que le mécanisme d’action dépendait plutôt de l’induction de la dégradation d’IDO par le protéasome (Hanafi et al. PlosOne 2014). Les travaux présentés dans cette thèse ont donc portés autant sur la compréhension d’une nouvelle plateforme de vaccination pouvant médier l’activation de lymphocytes T CD8+ cytotoxiques et sur le contrôle d’une immunosuppression établie par les cellules tumorales pour évader au système immunitaire. Ces deux grandes stratégies sont à considérer en immunothérapie du cancer et la combinaison avec d’autres thérapies déjà existantes pourra permettre une meilleure réponse clinique.
Resumo:
Background: Early microbial colonization of the gut reduces the incidence of infectious, inflammatory and autoimmune diseases. Recent population studies reveal that childhood hygiene is a significant risk factor for development of inflammatory bowel disease, thereby reinforcing the hygiene hypothesis and the potential importance of microbial colonization during early life. The extent to which early-life environment impacts on microbial diversity of the adult gut and subsequent immune processes has not been comprehensively investigated thus far. We addressed this important question using the pig as a model to evaluate the impact of early-life environment on microbe/host gut interactions during development. Results: Genetically-related piglets were housed in either indoor or outdoor environments or in experimental isolators. Analysis of over 3,000 16S rRNA sequences revealed major differences in mucosa-adherent microbial diversity in the ileum of adult pigs attributable to differences in earlylife environment. Pigs housed in a natural outdoor environment showed a dominance of Firmicutes, in particular Lactobacillus, whereas animals housed in a hygienic indoor environment had reduced Lactobacillus and higher numbers of potentially pathogenic phylotypes. Our analysis revealed a strong negative correlation between the abundance of Firmicutes and pathogenic bacterial populations in the gut. These differences were exaggerated in animals housed in experimental isolators. Affymetrix microarray technology and Real-time Polymerase Chain Reaction revealed significant gut-specific gene responses also related to early-life environment. Significantly, indoorhoused pigs displayed increased expression of Type 1 interferon genes, Major Histocompatibility Complex class I and several chemokines. Gene Ontology and pathway analysis further confirmed these results.
Resumo:
Hepatitis C virus (HCV) infection frequently persists despite substantial virus-specific immune responses and the combination of pegylated interferon (INF)-alpha and ribavirin therapy. Major histocompatibility complex class I restricted CD8+ T cells are responsible for the control of viraemia in HCV infection, and several studies suggest protection against viral infection associated with specific HLAs. The reason for low rates of sustained viral response (SVR) in HCV patients remains unknown. Escape mutations in response to cytotoxic T lymphocyte are widely described; however, its influence in the treatment outcome is ill understood. Here, we investigate the differences in CD8 epitopes frequencies from the Los Alamos database between groups of patients that showed distinct response to pegylated alpha-INF with ribavirin therapy and test evidence of natural selection on the virus in those who failed treatment, using five maximum likelihood evolutionary models from PAML package. The group of sustained virological responders showed three epitopes with frequencies higher than Non-responders group, all had statistical support, and we observed evidence of selection pressure in the last group. No escape mutation was observed. Interestingly, the epitope VLSDFKTWL was 100% conserved in SVR group. These results suggest that the response to treatment can be explained by the increase in immune pressure, induced by interferon therapy, and the presence of those epitopes may represent an important factor in determining the outcome of therapy.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)