966 resultados para High weight molecular polyethylene
Resumo:
The diagnostic performance of isolated high-grade prostatic intraepithelial neoplasia in prostatic biopsies has recently been questioned, and molecular analysis of high-grade prostatic intraepithelial neoplasia has been proposed for improved prediction of prostate cancer. Here, we retrospectively studied the value of isolated high-grade prostatic intraepithelial neoplasia and the immunohistochemical markers ?-methylacyl coenzyme A racemase, Bcl-2, annexin II, and Ki-67 for better risk stratification of high-grade prostatic intraepithelial neoplasia in our local Swiss population. From an initial 165 diagnoses of isolated high-grade prostatic intraepithelial neoplasia, we refuted 61 (37%) after consensus expert review. We used 30 reviewed high-grade prostatic intraepithelial neoplasia cases with simultaneous biopsy prostate cancer as positive controls. Rebiopsies were performed in 66 patients with isolated high-grade prostatic intraepithelial neoplasia, and the median time interval between initial and repeat biopsy was 3 months. Twenty (30%) of the rebiopsies were positive for prostate cancer, and 10 (15%) showed persistent isolated high-grade prostatic intraepithelial neoplasia. Another 2 (3%) of the 66 patients were diagnosed with prostate cancer in a second rebiopsy. Mean prostate-specific antigen serum levels did not significantly differ between the 22 patients with prostate cancer and the 44 without prostate cancer in rebiopsies, and the 30 positive control patients, respectively (median values, 8.1, 7.7, and 8.8 ng/mL). None of the immunohistochemical markers, including ?-methylacyl coenzyme A racemase, Bcl-2, annexin II, and Ki-67, revealed a statistically significant association with the risk of prostate cancer in repeat biopsies. Taken together, the 33% risk of being diagnosed with prostate cancer after a diagnosis of high-grade prostatic intraepithelial neoplasia justifies rebiopsy, at least in our not systematically prostate-specific antigen-screened population. There is not enough evidence that immunohistochemical markers can reproducibly stratify the risk of prostate cancer after a diagnosis of isolated high-grade prostatic intraepithelial neoplasia.
Stability of low molecular weight heparin anti-factor Xa activity in citrated whole blood and plasma
Resumo:
There are two main types of bone in the human body, trabecular and cortical bone. Cortical bone is primarily found on the outer surface of most bones in the body while trabecular bone is found in vertebrae and at the end of long bones (Ross 2007). Osteoporosis is a condition that compromises the structural integrity of trabecular bone, greatly reducing the ability of the bone to absorb energy from falls. The current method for diagnosing osteoporosis and predicting fracture risk is measurement of bone mineral density. Limitations of this method include dependence on the bone density measurement device and dependence on type of test and measurement location (Rubin 2005). Each year there are approximately 250,000 hip fractures in the United States due to osteoporosis (Kleerekoper 2006). Currently, the most common method for repairing a hip fracture is a hip fixation surgery. During surgery, a temporary guide wire is inserted to guide the permanent screw into place and then removed. It is believed that directly measuring this screw pullout force may result in a better assessment of bone quality than current indirect measurement techniques (T. Bowen 2008-2010, pers. comm.). The objective of this project is to design a device that can measure the force required to extract this guide wire. It is believed that this would give the surgeon a direct, quantitative measurement of bone quality at the site of the fixation. A first generation device was designed by a Bucknell Biomedical Engineering Senior Design team during the 2008- 2009 Academic Year. The first step of this project was to examine the device, conduct a thorough design analysis, and brainstorm new concepts. The concept selected uses a translational screw to extract the guide wire. The device was fabricated and underwent validation testing to ensure that the device was functional and met the required engineering specifications. Two tests were conducted, one to test the functionality of the device by testing if the device gave repeatable results, and the other to test the sensitivity of the device to misalignment. Guide wires were extracted from 3 materials, low density polyethylene, ultra high molecular weight polyethylene, and polypropylene and the force of extraction was measured. During testing, it was discovered that the spring in the device did not have a high enough spring constant to reach the high forces necessary for extracting the wires without excessive deflection of the spring. The test procedure was modified slightly so the wires were not fully threaded into the material. The testing results indicate that there is significant variation in the screw pullout force, up to 30% of the average value. This significant variation was attributed to problems in the testing and data collection, and a revised set of tests was proposed to better evaluate the performance of the device. The fabricated device is a fully-functioning prototype and further refinements and testing of the device may lead to a 3rd generation version capable of measuring the screw pullout force during hip fixation surgery.
Resumo:
Low mol. wt. (LMW) org. acids are important and ubiquitous chem. constituents in the atm. A comprehensive study of the chem. compn. of pptn. was carried out from June 2007 to June 2008 at a rural site in Anshun, in the west of Guizhou Province, China. During this period, 118 rainwater samples were collected and the main LMW carboxylic acids were detd. using ion chromatog. The av. pH of rainwater was 4.89 which is a typical acidic value. The most abundant carboxylic acids were formic acid (vol. wt. mean concn.: 8.77 μmol L-1) and acetic acid (6.90 μmol L-1), followed by oxalic acid (2.05 μmol L-1). The seasonal variation of concns. and wet deposition fluxes of org. acids indicated that direct vegetation emissions were the main sources of the org. acids. Highest concns. were obsd. in winter and were ascribed to the low winter rainfall and the contribution of other air pollution sources northeast of the study area. The ratio of formic and acetic acids in the pptn. ([F/A]T) was proposed as an indicator of pollution source. This suggested that the pollution resulted from direct emissions from natural or anthropogenic sources. Comparison with acid pptn. in other urban and rural areas in Guizhou showed that there was a decreasing contribution of LMW org. acids to free acidity and all anions in rainwater from urban to remote rural areas. Consequently, it is necessary to control emissions of org. acids to reduce the frequency of acid rain, esp. in rural and remote areas. [on SciFinder(R)]
Resumo:
The human epithelial cell adhesion molecule (EpCAM) is highly expressed in a variety of clinical tumour entities. Although an antibody against EpCAM has successfully been used as an adjuvant therapy in colon cancer, this therapy has never gained wide-spread use. We have therefore investigated the possibilities and limitations for EpCAM as possible molecular imaging target using a panel of preclinical cancer models. Twelve human cancer cell lines representing six tumour entities were tested for their EpCAM expression by qPCR, flow cytometry analysis and immunocytochemistry. In addition, EpCAM expression was analyzed in vivo in xenograft models for tumours derived from these cells. Except for melanoma, all cell lines expressed EpCAM mRNA and protein when grown in vitro. Although they exhibited different mRNA levels, all cell lines showed similar EpCAM protein levels upon detection with monoclonal antibodies. When grown in vivo, the EpCAM expression was unaffected compared to in vitro except for the pancreatic carcinoma cell line 5072 which lost its EpCAM expression in vivo. Intravenously applied radio-labelled anti EpCAM MOC31 antibody was enriched in HT29 primary tumour xenografts indicating that EpCAM binding sites are accessible in vivo. However, bound antibody could only be immunohistochemically detected in the vicinity of perfused blood vessels. Investigation of the fine structure of the HT29 tumour blood vessels showed that they were immature and prone for higher fluid flux into the interstitial space. Consistent with this hypothesis, a higher interstitial fluid pressure of about 12 mbar was measured in the HT29 primary tumour via "wick-in-needle" technique which could explain the limited diffusion of the antibody into the tumour observed by immunohistochemistry.
Resumo:
Polylactic acid (PLA) is a bio-derived, biodegradable polymer with a number of similar mechanical properties to commodity plastics like polyethylene (PE) and polyethylene terephthalate (PETE). There has recently been a great interest in using PLA to replace these typical petroleum-derived polymers because of the developing trend to use more sustainable materials and technologies. However, PLA¿s inherent slow crystallization behavior is not compatible with prototypical polymer processing techniques such as molding and extrusion, and in turn inhibits its widespread use in industrial applications. In order to make PLA into a commercially-viable material, there is a need to process the material in such a way that its tendency to form crystals is enhanced. The industry standard for producing PLA products is via twin screw extrusion (TSE), where polymer pellets are fed into a heated extruder, mixed at a temperature above its melting temperature, and molded into a desired shape. A relatively novel processing technique called solid-state shear pulverization (SSSP) processes the polymer in the solid state so that nucleation sites can develop and fast crystallization can occur. SSSP has also been found to enhance the mechanical properties of a material, but its powder output form is undesirable in industry. A new process called solid-state/melt extrusion (SSME), developed at Bucknell University, combines the TSE and SSSP processes in one instrument. This technique has proven to produce moldable polymer products with increased mechanical strength. This thesis first investigated the effects of the TSE, SSSP, and SSME polymer processing techniques on PLA. The study seeks to determine the process that yields products with the most enhanced thermal and mechanical properties. For characterization, percent crystallinity, crystallization half time, storage modulus, softening temperature, degradation temperature and molecular weight were analyzed for all samples. Through these characterization techniques, it was observed that SSME-processed PLA had enhanced properties relative to TSE- and SSSP-processed PLA. Because of the previous findings, an optimization study for SSME-processed PLA was conducted where throughput and screw design were varied. The optimization study determined PLA processed with a low flow rate and a moderate screw design in an SSME process produced a polymer product with the largest increase in thermal properties and a high retention of polymer structure relative to TSE-, SSSP-, and all other SSME-processed PLA. It was concluded that the SSSP part of processing scissions polymer chains, creating defects within the material, while the TSE part of processing allows these defects to be mixed thoroughly throughout the sample. The study showed that a proper SSME setup allows for both the increase in nucleation sites within the polymer and sufficient mixing, which in turn leads to the development of a large amount of crystals in a short period of time.
Resumo:
We report of a 71-year-old woman with a history of chronic analgesic nephropathy, who underwent coronary angiography. Because of anterior ventricular aneurysm, anticoagulation with nadroparine was installed. Continued ACE-inhibitor and ASA with additional intravenous contrast substance lead to acute tubular necrosis with rapid decline of the renal function. Due to accumulation of the low molecular weight heparin, the patient developed an extensive retroperitoneal haematoma with circulatory shock and temporary anuric kidney failure. Low molecular weight heparins are commonly used during percutaneous coronary interventions. They are as safe and efficient compared to unfractioned heparin. But due to their renal elimination, they have to be monitored by measuring anti-factor Xa-activity if creatinine-clearance is <30 ml/min.
Resumo:
Trypanosoma brucei encodes a relatively high number of genes of the equilibrative nucleoside transporter (ENT) family. We report here the cloning and in-depth characterization of one T. brucei brucei ENT member, TbNT9/AT-D. This transporter was expressed in Saccharomyces cerevisiae and displayed a uniquely high affinity for adenosine (Km = 0.068 +/- 0.013 microM), as well as broader selectivity for other purine nucleosides in the low micromolar range, but was not inhibited by nucleobases or pyrimidines. This selectivity profile is consistent with the P1 transport activity observed previously in procyclic and long-slender bloodstream T. brucei, apart from the 40-fold higher affinity for adenosine than for inosine. We found that, like the previously investigated P1 activity of long/slender bloodstream trypanosomes, the 3'-hydroxy, 5'-hydroxy, N3, and N7 functional groups contribute to transporter binding. In addition, we show that the 6-position amine group of adenosine, but not the inosine 6-keto group, makes a major contribution to binding (DeltaG0 = 12 kJ/mol), explaining the different Km values of the purine nucleosides. We further found that P1 activity in procyclic and long-slender trypanosomes is pharmacologically distinct, and we identified the main gene encoding this activity in procyclic cells as NT10/AT-B. The presence of multiple P1-type nucleoside transport activities in T. brucei brucei facilitates the development of nucleoside-based treatments for African trypanosomiasis and would delay the onset of uptake-related drug resistance to such therapy. We show that both TbNT9/AT-D and NT10/AT-B transport a range of potentially therapeutic nucleoside analogs.
Resumo:
Low molecular weight dextran sulfate (DXS) has been reported to inhibit the classical, alternative pathway as well as the mannan-binding lectin pathway of the complement system. Furthermore, it acts as an endothelial cell protectant inhibiting complement-mediated endothelial cell damage. Endothelial cells are covered with a layer of heparan sulfate (HS), which is rapidly released under conditions of inflammation and tissue injury. Soluble HS induces maturation of dendritic cells (DC) via TLR4. In this study, we show the inhibitory effect of DXS on human DC maturation. DXS significantly prevents phenotypic maturation of monocyte-derived DC and peripheral myeloid DC by inhibiting the up-regulation of CD40, CD80, CD83, CD86, ICAM-1, and HLA-DR and down-regulates DC-SIGN in response to HS or exogenous TLR ligands. DXS also inhibits the functional maturation of DC as demonstrated by reduced T cell proliferation, and strongly impairs secretion of the proinflammatory mediators IL-1beta, IL-6, IL-12p70, and TNF-alpha. Exposure to DXS leads to a reduced production of the complement component C1q and a decreased phagocytic activity, whereas C3 secretion is increased. Moreover, DXS was found to inhibit phosphorylation of IkappaB-alpha and activation of NF-kappaB. These findings suggest that DXS prevents TLR-induced maturation of human DC and may therefore be a useful reagent to impede the link between innate and adaptive immunity.
Resumo:
Complement is an essential part of the innate immune system and plays a crucial role in organ and islet transplantation. Its activation, triggered for example by ischemia/reperfusion (I/R), significantly influences graft survival, and blocking of complement by inhibitors has been shown to attenuate I/R injury. Another player of innate immunity are the dendritic cells (DC), which form an important link between innate and adaptive immunity. DC are relevant in the induction of an immune response as well as in the maintenance of tolerance. Modulation or inhibition of both components, complement and DC, may be crucial to improve the clinical outcome of solid organ as well as islet transplantation. Low molecular weight dextran sulfate (DXS), a well-known complement inhibitor, has been shown to prevent complement-mediated damage of the donor graft endothelium and is thus acting as an endothelial protectant. In this review we will discuss the evidence for this cytoprotective effect of DXS and also highlight recent data which show that DXS inhibits the maturation of human DC. Taken together the available data suggest that DXS may be a useful reagent to prevent the activation of innate immunity, both in solid organ and islet transplantation.
Resumo:
Lipoproteins are a heterogeneous population of blood plasma particles composed of apolipoproteins and lipids. Lipoproteins transport exogenous and endogenous triglycerides and cholesterol from sites of absorption and formation to sites of storage and usage. Three major classes of lipoproteins are distinguished according to their density: high-density (HDL), low-density (LDL) and very low-density lipoproteins (VLDL). While HDLs contain mainly apolipoproteins of lower molecular weight, the two other classes contain apolipoprotein B and apolipoprotein (a) together with triglycerides and cholesterol. HDL concentrations were found to be inversely related to coronary heart disease and LDL/VLDL concentrations directly related. Although many studies have been published in this area, few have concentrated on the exact protein composition of lipoprotein particles. Lipoproteins were separated by density gradient ultracentrifugation into different subclasses. Native gel electrophoresis revealed different gel migration behaviour of the particles, with less dense particles having higher apparent hydrodynamic radii than denser particles. Apolipoprotein composition profiles were measured by matrix-assisted laser desorption/ionization-mass spectrometry on a macromizer instrument, equipped with the recently introduced cryodetector technology, and revealed differences in apolipoprotein composition between HDL subclasses. By combining these profiles with protein identifications from native and denaturing polyacrylamide gels by liquid chromatography-tandem mass spectrometry, we characterized comprehensively the exact protein composition of different lipoprotein particles. We concluded that the differential display of protein weight information acquired by macromizer mass spectrometry is an excellent tool for revealing structural variations of different lipoprotein particles, and hence the foundation is laid for the screening of cardiovascular disease risk factors associated with lipoproteins.
Resumo:
An ongoing canine distemper epidemic was first detected in Switzerland in the spring of 2009. Compared to previous local canine distemper outbreaks, it was characterized by unusually high morbidity and mortality, rapid spread over the country, and susceptibility of several wild carnivore species. Here, the authors describe the associated pathologic changes and phylogenetic and biological features of a multiple highly virulent canine distemper virus (CDV) strain detected in and/or isolated from red foxes (Vulpes vulpes), Eurasian badgers (Meles meles), stone (Martes foina) and pine (Martes martes) martens, from a Eurasian lynx (Lynx lynx), and a domestic dog. The main lesions included interstitial to bronchointerstitial pneumonia and meningopolioencephalitis, whereas demyelination-the classic presentation of CDV infection-was observed in few cases only. In the brain lesions, viral inclusions were mainly in the nuclei of the neurons. Some significant differences in brain and lung lesions were observed between foxes and mustelids. Swiss CDV isolates shared together with a Hungarian CDV strain detected in 2004. In vitro analysis of the hemagglutinin protein from one of the Swiss CDV strains revealed functional and structural differences from that of the reference strain A75/17, with the Swiss strain showing increased surface expression and binding efficiency to the signaling lymphocyte activation molecule (SLAM). These features might be part of a novel molecular signature, which might have contributed to an increase in virus pathogenicity, partially explaining the high morbidity and mortality, the rapid spread, and the large host spectrum observed in this outbreak.