378 resultados para Heron Triangles
Resumo:
Apart from cleaner fish, there are many reports on cleaning by shrimps, yet whether shrimps actually 'clean', i.e. eat parasites in the wild, has not been demonstrated. For the first time, we show that, conclusively, cleaner shrimp in the wild do clean. We found crustacean ectoparasites from the Family Gnathiidae and the Class Copepoda in the gut contents of wild cleaner shrimp, Urocaridella sp. and Periclimenes holthuisi. In addition, they ate parasitic monogenean flatworms, Benedenia sp., offered to them in the laboratory. Finally, P. holthuisi, significantly reduced monogenean, Benedenia sp., loads by 74.5% on captive surgeonfish Ctenochaetus striatus within 48 h. Such large reductions in parasite loads are likely to benefit individual fish. These results emphasise the need for more information on the ecological role of cleaner shrimp on coral reefs.
Resumo:
Epaulette sharks Hemiscyllium ocellatum were surveyed on Heron Island, Great Barrier Reef, Australia for gnathiid isopods and protozoan (haemogregarine) parasites to determine the prevalence and intensity of infection and to investigate the potential role of gnathiids as vectors of these haemogregarines, the first such study carried out on elasmobranchs. Juvenile gnathiids were collected and quantified using a novel non-invasive and chemical-free technique and gnathiid squashes were examined for haemogregarine developmental stages. The feeding and reproductive ecology of the Gnathia spp. was investigated to better understand the relationship between gnathiids and haemogregarines. Gnathiids were found on all sharks and intensities ranged between two and 66. Only third-stage gnathiid juveniles were found, which fell into two size groups (A and B). These juveniles remained attached to H. ocellatum for up to 17 days, the longest period of attachment yet recorded for gnathiids. Group A female gnathiids produced broods of 45-187 (median = 120) first stage juveniles from between 54 and 82 days (median = 63 days) after detachment. First stage juveniles survived for an average of 15.8 +/- 0.1 (SEM) days without feeding. The prevalence (6.7%) and parasitaemia (usually
Resumo:
Adult bucephalid trematodes (Digenea) generally only occur in piscivorous fish. Within labrid fishes they are very rare, however, we have found them in labrid cleaner fish that feed on the ectoparasites of fish. We surveyed 969 labrid fishes from the tropical Pacific and found bucephalids only in cleaners (Lahroides dimidiatus, L. bicolor, and Bodianus axillaris) and none in piscivores. The prevalences of bucephalids in L. dimidiatus at Lizard Island, Heron Island, Orpheus Island (all on the Great Barrier Reef), New Caledonia, and Moorea (French Polynesia) were 51, 47, 67, 56, and 67%, respectively. All of the L. bicolor examined from Moorea were infected. Bucephalids were highly prevalent in all size classes of L. dimidiatus from Lizard Island. Bucephalids were found in a 1.6-cm long juvenile L. dimidiatus, in which, piscivory is highly unlikely. We examined the literature on the worldwide bucephalid fauna in labrids and all hosts were found to be cleaners (Symphodus tinca, S. mediterraneus, L. dimidiatus, L. bicolor, and Bodianus axillaris) except Notolabrus parilus, whose ecology is unknown. We suggest that cleaners eat bucephalid metacercariae directly from the exterior surface of client fish during cleaning interactions. This is the first evidence of digeneans in the diet of L. dimidiatus, and the first study to show this novel form of parasite transmission where infective stages are eaten as a result of cleaning behaviour. Cleaning-mediated parasite transmission may result in behavioural modification of second intermediate hosts because clients and parasites both benefit from transmission. If the infection is costly to cleaners and acquired during cheating behaviour, then this parasite might regulate mutualism. Alternatively, if infective stages are targeted, infection by these bucephalids may be a negative consequence of an honest foraging strategy.
Resumo:
We propose a new genus of the Gyliauchenidae Fukui, 1929 ( Digenea), Ptychogyliauchen, gen. nov., for four new species that infect Indo-West Pacific siganid fishes. Ptychogyliauchen, gen. nov. is a morphologically distinctive genus, diagnosed principally by the presence of a highly convoluted oesophagus, which generally exceeds the total body length of the worm, and by the unusual folded structure of the ejaculatory duct. Ptychogyliauchen thetidis, sp. nov. is designated as the type species, and is described from the intestine of Siganus punctatus (Siganidae) from Heron Island, Great Barrier Reef, Queensland, Australia. Ptychogyliauchen himinglaeva, sp. nov. is described from the intestine of Siganus corallinus ( Siganidae) from Lizard Island, Great Barrier Reef, Queensland, Australia. Ptychogyliauchen leucothea, sp. nov. is described from the intestine of S. argenteus, and further recorded from S. fuscescens, off Ningaloo, Western Australia, Australia. Ptychogyliauchen thistilbardi, sp. nov. is described from the intestine of S. doliatus from Noumea, New Caledonia, and is also found in S. argenteus, S. canaliculatus, S. corallinus and S. spinus from Noumea, New Caledonia, and Moorea, Tahiti, French Pacific. Ptychogyliauchen thistilbardi, sp. nov. also occurs in the intestine of Chaetodon citrinellus (Chaetodontidae) from Moorea. A key to species is provided. All species have been described following morphological examination using light microscopy, and specimens of P. thetidis, sp. nov., P. leucothea, sp. nov. and P. thistilbardi, sp. nov. have been characterised using molecular methods. Sequences were obtained for a combination of nuclear ribosomal (28S (D1-D3) and ITS2) and mitochondrial (ND1) genes. A phylogenetic analysis of sequenced specimens of Ptychogyliauchen, gen. nov. was conducted using species of Petalocotyle Ozaki, 1934 for outgroup comparison. This analysis, based on alignments of the ITS2 and 28S (D1-D3) rDNA genes, supports monophyly of the geographically widespread P. thistilbardi, sp. nov., which is known from both siganid and chaetodontid hosts. We discuss the taxonomy of the genus and the host associations of each species and the group.
Resumo:
Pearsonellum pygmaeus n. sp. is described from Cromileptes altivelis (Serranidae), the Barramundi Cod, from Heron Island (southern Great Barrier Reef) and Lizard Island (northern Great Bat-Her Reef). This new species differs from Pearsonellum eorventum (type and only species) in the combination of smaller overall body size, the relative distance of the brain from the anterior end, the relative lengths of both the oesophagus and the testis, the degree to which the testis extends outside the intercaecal field, the shape of the testis, the shape and size of the ovary and the extent to which the uterzus loops around the ovary. There are in addition, 20 base pair differences between the ITS2 rDNA sequence of P. pygmaeus n. sp. and that of P corventum. Three new host records for P. corventum are reported. Adelomyllos teenae n. g., n. sp. is described from Epinephelus coioides (Serranidae), the Estuary Cod, from Moreton Bay, southeast Queensland. The new genus differs from the 22 other sanguinicolid genera in the combined possession of two testes, a cirrus-sac, separate genital pores, a post-ovarian uterus and an H-shaped intestine. A. teenae n. sp. is the third sanguinicolid described from the Epinephelinae. Sanguinicolids have now been reported from 11 species of Serranidae. (C) 2004 Elsevier Ireland Ltd. All rights reserved.
Resumo:
The anterior adhesive system of the oncomiracidium and adult of Merizocotyle icopae (Monogenea: Monocotylidae) were compared. The oncomiracidium has one ventrally placed aperture on either side of the head near the anterior extremity. In the adult, there are three ventrally placed apertures on either side of the head region. Both systems have three types of electron-dense secretory bodies opening into each aperture. A rod-shaped secretion (S1) and a small electron dense ovoid secretion (S2) are common to larvae and adults. The third secretion type differs: in adults, it is a large, spherical (S3) type but in larvae, it is an ovoid (S4) body. S4 bodies do occur in adults, but appear to be secreted as a general body secretion. An additional anteromedian secretion (S5) is also present in the oncomiracidium, but is not secreted into the anterior apertures. Homology and function of secretions are discussed.
Resumo:
As a knowable object, the human body is highly complex. Evidence from several converging lines of research, including psychological studies, neuroimaging and clinical neuropsychology, indicates that human body knowledge is widely distributed in the adult brain, and is instantiated in at least three partially independent levels of representation. Sensori-motor body knowledge is responsible for on-line control and movement of one's own body and may also contribute to the perception of others' moving bodies; visuo-spatial body knowledge specifies detailed structural descriptions of the spatial attributes of the human body; and lexical-semantic body knowledge contains language-based knowledge about the human body. In the first chapter of this Monograph, we outline the evidence for these three hypothesized levels of human body knowledge, then review relevant literature on infants' and young children's human body knowledge in terms of the three-level framework. In Chapters II and III, we report two complimentary series of studies that specifically investigate the emergence of visuospatial body knowledge in infancy. Our technique is to compare infants' responses to typical and scrambled human bodies, in order to evaluate when and how infants acquire knowledge about the canonical spatial layout of the human body. Data from a series of visual habituation studies indicate that infants first discriminate scrambled from typical human body pictures at 15 to 18 months of age. Data from object examination studies similarly indicate that infants are sensitive to violations of three-dimensional human body stimuli starting at 15-18 months of age. The overall pattern of data supports several conclusions about the early development of human body knowledge: (a) detailed visuo-spatial knowledge about the human body is first evident in the second year of life, (b) visuo-spatial knowledge of human faces and human bodies are at least partially independent in infancy and (c) infants' initial visuo-spatial human body representations appear to be highly schematic, becoming more detailed and specific with development. In the final chapter, we explore these conclusions and discuss how levels of body knowledge may interact in early development.
Resumo:
Recent episodes of mass coral bleaching, the loss of symbiotic dinoflagellates or photosynthetic pigment from hermatypic corals, have been triggered by elevated sea temperatures. Photosynthetic irradiance is an important secondary factor. Host based pigments (pocilloporins or Green Fluorescent Protein homologues) have been proposed to reduce the impact of elevated temperature by shading the dinoflagellate symbionts of corals, thereby reducing light stress. This study investigates this phenomenon in the reef-building coral Acropora aspera from Heron Island Research Station (Great Barrier Reef, Australia), which occurs as 3 distinct colour morphs. Experimental data showed that the host pigments are photoprotective at normal temperatures or
Resumo:
At Heron Island reef, Great Barrier Reef Australia, biomass densities and mean wet mass of Ward's damselfish Pomacentrus wardi and the jewelled blenny Salarias fasciatus were not significantly different at 2-37 v. 2-95 g m(-2) and 8-7 v. 7-9 g, respectively. Whereas S. fasciatus significantly exceeded P. wardi in (1) total number of bites per day (3427 v. 1155), (2) the mass of epilithic algal community consumed per bite (2-19 1,. 0-14mg) and (3) total organic carbon consumed per day (487-31 v. 35-46 mg C m(-2) day(-1)). Territorial behaviour differed also between the two species. Pomacentrus wardi chased from their territories a smaller proportion of blennies than roving grazers (i.e. scarids, acanthurids, siganids and pomacentrids) relative to S. fasciatus. Salarias fasciatus chased c. 90% of other blennies from their territories, while chasing only c. 20% of all damsels that entered. Both P. wardi and S. fasciatus rarely chased non-grazers. The chasing behaviour of S. fascialus was size dependent, with resident fish chasing only individuals of its own family (i.e. Blenniidae) that were the same or smaller size. Pomacentrus wardi may have tolerated S. fasciatus grazing within its territory, as it contributes to territory defence from other blennies. The possibility that the interaction between the two species is facilitative, rather than competitive, is discussed. It was concluded that salariine blennies play an important, and previously underestimated role in coral reef trophodynamics. (C) 2004 The Fisheries Society of the British Isles.
Resumo:
A survey of bivalves from Heron Island on the Great Barrier Reef, Australia, revealed a novel digenean infection in Lioconcha castrensis (Bivalvia: Veneridae). The cercaria has oral and ventral suckers, a dorsoventrally orientated stylet embedded in the oral sucker, penetration glands, and a large tail that is inflated at its base. This morphology is broadly consistent with that of previously described gorgoderid cercariae. Partial large subunit ribosomal RNA gene (D1-D3 domains) was sequenced and aligned with sequences from other gorgoderids and related families. Phylogenetic analysis also suggests that the species belongs to the Gorgoderinae. To our knowledge, this is the first report of a gorgoderid from a marine bivalve.
Resumo:
Digenean parasites of marine bivalves are relatively poorly known, particularly in Australia. We surveyed 2256 bivalve individuals ( 47 species, 17 families) from Queensland marine waters incorporating south-east Queensland, Heron Island ( southern Great Barrier Reef) and Lizard Island ( northern Great Barrier Reef). Infections of trematode species from three families, Bucephalidae, Gorgoderidae and Monorchiidae, were found. Overall prevalence of infection was 2.3%. The Bucephalidae was the most commonly found family; 11 species were found in Tellinidae, Ostreidae, Isognomonidae and Spondylidae - the latter two previously unknown as hosts for bucephalids. A single gorgoderid infection was found in a venerid, Lioconcha castrensis. Five species of monorchiids were found from Tellinidae and Lucinidae. All infections are new host/parasite records. No infections were found in 35 of the 47 bivalve species sampled. The generally low prevalence of infection by digeneans of bivalves suggests that it is unlikely that any of the species reported here are seriously damaging to bivalve populations in these waters. We deduce that, at best, we have some life-cycle information but no actual identifications for 10% of the species of trematodes that infect bivalves of Queensland marine waters.
Resumo:
Two new species of hemiurine hemiurid are described from Spratelloides robustus off Woodman Point in southern Western Australia. Hemiurus lignator n. sp. differs from its congeners by a combination of similar-sized suckers, long sinus-sac, tandem testes, relatively elongate shape and unthickened seminal vesicle wall. Parahemiurus xylokopos n. sp. differs from its congeners in a combination of its squat form, its distinctly lobed vitellarium and the proximity of the gonads to the ventral sucker. P. merus (Linton, 1910) is reported from Acanthopagrus australis, Pomatomus saltatrix and Trachinotus coppingeri off northern New South Wales, Caranx sexfasciatus, Scorpis lineolata, Siganus nebulosus, Thunnus tonggol and T. coppingeri off southern Queensland, Cephalopholis boenak and Euthynnus affinis off Heron Island, southern Great Barrier Reef, P. saltatrix off southern Western Australia and Priacanthus hamrur off New Caledonia.
Resumo:
Waves breaking on the seaward rim of a coral reef generate a flow of water from the exposed side of the reef to the sheltered side and/or to either channels through the reef-rim or lower sections of the latter. This wave-generated flow is driven by the water surface gradient resulting from the wave set-up created by the breaking waves. This paper reviews previous approaches to modelling wave-generated flows across coral reefs and discusses the influence of reef morphology and roughness upon these flows. Laboratory measurements upon a two-dimensional horizontal reef platform with a steep reef face provide the basis for extending a previous theoretical analysis for wave set-up on a reef in the absence of a flow [Gourlay, M.R., 1996b. Wave set-up on coral reefs. 2. Set-up on reefs with various profiles. Coastal Engineering 28, 1755] to include the interaction between a unidirectional flow and the wave set-up. The laboratory model results are then used to demonstrate that there are two basic reef-top flow regimes-reef-top control and reef-rim control. Using open channel flow theory, analytical relationships are derived for the reef-top current velocity in terms of the offreef wave conditions, the reef-top water depth and the physical characteristics of the reef-top topography. The wave set-up and wave-generated flow relationships are found to predict experimental values with reasonable accuracy in most cases. The analytical relationships are used to investigate wave-generated flows into a boat harbour channel on Heron Reef in the southern Great Barrier Reef. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
The abundance and community composition of the endofauna in 2 species of sponge, Haliclona sp. 1 and Haliclona sp. 2 (phylum Porifera: order Haplosclerida), were examined at different sites on the slope at Heron Island Reef, in the southern Great Barrier Reef, on 2 separate occasions. Both species of Haliclona Occupy Similar habitats on the reef slope and are often found living adjacent to each other, but the major groups of secondary metabolites and the gross external morphology in the 2 species of sponge are different. The 2 species of sponge supported significantly different endofaunal communities, with Haliclona sp. 2 Supporting 3 to 4 times more individuals than Haliclona sp. 1. Fewer demersal zooplankton (copepods), nematodes and some peracarid crustaceans were found in Haliclona sp. I compared with Haliclona sp. 2. There were also differences in the numbers of spionid, nereidid and syllid. polychaetes living in the 2 species of sponge. The only taxon that was more abundant in Haliclona sp. 1 than Haliclona sp. 2 was the spionid Polydorella prolifera, and this difference was only evident on 1. of the 2 occasions. The amount of free space (pores, channels, cavities) for a given weight of sponge was only 19% greater in Haliclona sp. 2 than in Haliclona sp. 1, suggesting other factors, such as the differences in the allelochemicals, may have a role in determining the numbers and types of animals living in these 2 species of sponge.
Resumo:
Approximately 1-2% of the tropical abalone Haliotis asinina inhabiting Heron Island Reef are infected with opecoelid digeneans. These largely inhabit the haemocoel surrounding the cerebral ganglia and digestive gland-gonad complex, and infected abalone typically have significantly reduced or ablated gonads. Observations of infected abalone reveal two distinct cercarial emergence patterns, one which correlates tightly with the abalone's highly regular and synchronous fortnightly spawning cycle, and the other which occurs in a circadian pattern. The former appears to be a novel emergence strategy not previously observed in digeneans. While the cercariae in all abalone are morphologically indistinguishable, comparison of sequences from the internal transcribed spacer 2 (ITS 2) region of the ribosomal DNA reveals a 5.7% difference between cercariae displaying different emergence patterns, indicating these are two distinct species that probably belong to the same genus. The ITS 2 sequences of the species with the daily emergence pattern are identical to that of an undescribed adult opecoelid from the gut of the barramundi cod, Cromileptes altivelis. Combined molecular, morphological and emergence data suggest that while these opecoelid cercariae use the same first intermediate host and are closely related species-members of the genus Allopodocotyle-they fill different ecological niches that are likely to include different definitive hosts.