952 resultados para Helicity method, subtraction method, numerical methods, random polarizations
Resumo:
The structure of a turbulent non-premixed flame of a biogas fuel in a hot and diluted coflow mimicking moderate and intense low dilution (MILD) combustion is studied numerically. Biogas fuel is obtained by dilution of Dutch natural gas (DNG) with CO2. The results of biogas combustion are compared with those of DNG combustion in the Delft Jet-in-Hot-Coflow (DJHC) burner. New experimental measurements of lift-off height and of velocity and temperature statistics have been made to provide a database for evaluating the capability of numerical methods in predicting the flame structure. Compared to the lift-off height of the DNG flame, addition of 30 % carbon dioxide to the fuel increases the lift-off height by less than 15 %. Numerical simulations are conducted by solving the RANS equations using Reynolds stress model (RSM) as turbulence model in combination with EDC (Eddy Dissipation Concept) and transported probability density function (PDF) as turbulence-chemistry interaction models. The DRM19 reduced mechanism is used as chemical kinetics with the EDC model. A tabulated chemistry model based on the Flamelet Generated Manifold (FGM) is adopted in the PDF method. The table describes a non-adiabatic three stream mixing problem between fuel, coflow and ambient air based on igniting counterflow diffusion flamelets. The results show that the EDC/DRM19 and PDF/FGM models predict the experimentally observed decreasing trend of lift-off height with increase of the coflow temperature. Although more detailed chemistry is used with EDC, the temperature fluctuations at the coflow inlet (approximately 100K) cannot be included resulting in a significant overprediction of the flame temperature. Only the PDF modeling results with temperature fluctuations predict the correct mean temperature profiles of the biogas case and compare well with the experimental temperature distributions.
Resumo:
Cette thèse concerne la modélisation des interactions fluide-structure et les méthodes numériques qui s’y rattachent. De ce fait, la thèse est divisée en deux parties. La première partie concerne l’étude des interactions fluide-structure par la méthode des domaines fictifs. Dans cette contribution, le fluide est incompressible et laminaire et la structure est considérée rigide, qu’elle soit immobile ou en mouvement. Les outils que nous avons développés comportent la mise en oeuvre d’un algorithme fiable de résolution qui intégrera les deux domaines (fluide et solide) dans une formulation mixte. L’algorithme est basé sur des techniques de raffinement local adaptatif des maillages utilisés permettant de mieux séparer les éléments du milieu fluide de ceux du solide que ce soit en 2D ou en 3D. La seconde partie est l’étude des interactions mécaniques entre une structure flexible et un fluide incompressible. Dans cette contribution, nous proposons et analysons des méthodes numériques partitionnées pour la simulation de phénomènes d’interaction fluide-structure (IFS). Nous avons adopté à cet effet, la méthode dite «arbitrary Lagrangian-Eulerian» (ALE). La résolution fluide est effectuée itérativement à l’aide d’un schéma de type projection et la structure est modélisée par des modèles hyper élastiques en grandes déformations. Nous avons développé de nouvelles méthodes de mouvement de maillages pour aboutir à de grandes déformations de la structure. Enfin, une stratégie de complexification du problème d’IFS a été définie. La modélisation de la turbulence et des écoulements à surfaces libres ont été introduites et couplées à la résolution des équations de Navier-Stokes. Différentes simulations numériques sont présentées pour illustrer l’efficacité et la robustesse de l’algorithme. Les résultats numériques présentés attestent de la validité et l’efficacité des méthodes numériques développées.
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-08
Resumo:
Dissertação (mestrado)—Universidade de Brasília, Faculdade de Tecnologia, Departamento de Engenharia Civil e Ambiental, 2015.
Resumo:
In this paper we consider a Caputo type fractional derivative with respect to another function. Some properties, like the semigroup law, a relationship between the fractional derivative and the fractional integral, Taylor’s Theorem, Fermat’s Theorem, etc., are studied. Also, a numerical method to deal with such operators, consisting in approximating the fractional derivative by a sum that depends on the first-order derivative, is presented. Relying on examples, we show the efficiency and applicability of the method. Finally, an application of the fractional derivative, by considering a Population Growth Model, and showing that we can model more accurately the process using different kernels for the fractional operator is provided.
Resumo:
Dissertação (mestrado)—Universidade de Brasília, Faculdade de Tecnologia, Departamento de Engenharia Elétrica, 2015.
Resumo:
Despite the wide swath of applications where multiphase fluid contact lines exist, there is still no consensus on an accurate and general simulation methodology. Most prior numerical work has imposed one of the many dynamic contact-angle theories at solid walls. Such approaches are inherently limited by the theory accuracy. In fact, when inertial effects are important, the contact angle may be history dependent and, thus, any single mathematical function is inappropriate. Given these limitations, the present work has two primary goals: 1) create a numerical framework that allows the contact angle to evolve naturally with appropriate contact-line physics and 2) develop equations and numerical methods such that contact-line simulations may be performed on coarse computational meshes.
Fluid flows affected by contact lines are dominated by capillary stresses and require accurate curvature calculations. The level set method was chosen to track the fluid interfaces because it is easy to calculate interface curvature accurately. Unfortunately, the level set reinitialization suffers from an ill-posed mathematical problem at contact lines: a ``blind spot'' exists. Standard techniques to handle this deficiency are shown to introduce parasitic velocity currents that artificially deform freely floating (non-prescribed) contact angles. As an alternative, a new relaxation equation reinitialization is proposed to remove these spurious velocity currents and its concept is further explored with level-set extension velocities.
To capture contact-line physics, two classical boundary conditions, the Navier-slip velocity boundary condition and a fixed contact angle, are implemented in direct numerical simulations (DNS). DNS are found to converge only if the slip length is well resolved by the computational mesh. Unfortunately, since the slip length is often very small compared to fluid structures, these simulations are not computationally feasible for large systems. To address the second goal, a new methodology is proposed which relies on the volumetric-filtered Navier-Stokes equations. Two unclosed terms, an average curvature and a viscous shear VS, are proposed to represent the missing microscale physics on a coarse mesh.
All of these components are then combined into a single framework and tested for a water droplet impacting a partially-wetting substrate. Very good agreement is found for the evolution of the contact diameter in time between the experimental measurements and the numerical simulation. Such comparison would not be possible with prior methods, since the Reynolds number Re and capillary number Ca are large. Furthermore, the experimentally approximated slip length ratio is well outside of the range currently achievable by DNS. This framework is a promising first step towards simulating complex physics in capillary-dominated flows at a reasonable computational expense.
Resumo:
Assessing the fit of a model is an important final step in any statistical analysis, but this is not straightforward when complex discrete response models are used. Cross validation and posterior predictions have been suggested as methods to aid model criticism. In this paper a comparison is made between four methods of model predictive assessment in the context of a three level logistic regression model for clinical mastitis in dairy cattle; cross validation, a prediction using the full posterior predictive distribution and two “mixed” predictive methods that incorporate higher level random effects simulated from the underlying model distribution. Cross validation is considered a gold standard method but is computationally intensive and thus a comparison is made between posterior predictive assessments and cross validation. The analyses revealed that mixed prediction methods produced results close to cross validation whilst the full posterior predictive assessment gave predictions that were over-optimistic (closer to the observed disease rates) compared with cross validation. A mixed prediction method that simulated random effects from both higher levels was best at identifying the outlying level two (farm-year) units of interest. It is concluded that this mixed prediction method, simulating random effects from both higher levels, is straightforward and may be of value in model criticism of multilevel logistic regression, a technique commonly used for animal health data with a hierarchical structure.
Resumo:
A simple method developed for genomic DNA isolation from fungus was tested on the red alga, Gelidium sesquipedale (Clem.) Born et Thur., which is commercially exploited for its high sulfated polysaccharide (agar) content. This method is faster, cheaper, and less toxic than conventional phenol/chloroform methods. Random amplified polymorphic DNA (RAPD) amplifications were performed successfully without the necessity of purifying the DNA. RAPD markers were used to investigate the genetic similarity among three natural populations of G. sesquipedale from southern Portugal. Bulked-genomic DNA samples of 15 different individuals were made in each population. These can be conceived of as a sample of the population DNA. Of the 62 primers screened, 41 produced bands and 22 revealed polymorphisms. Genetic similarities among populations were high. Populations that are further away from each other have the lowest similarity coefficients, whereas the intermediate Ingrina population, located on the south coast, showed higher genetic similarity with the Odeceixe population located on the southwest coast, than with the Sao Rafael southern population. This suggests a higher genetic flow between Odeceixe and Ingrina or the result may be a founder effect in the sense that the species has propagated from the east coast to the south coast of Portugal. We conclude that the use of this isolation method with RAPD analysis is appropriate to characterize the genetic variability of this commercial species along its geographical distribution. Large sample sizes can be screened at a relatively low cost. Finding genetic markers for commercial populations of C. sesquipedale may be of industrial interest.
Resumo:
Purpose: To develop a simple, fast and sensitive spectrophotometric method for the determination of tofisopam in tablet dosage form. Methods: Tofisopam as n-electron donor was reacted with two π-acceptors, namely, chloranilic acid (ChA), and 7,7,8,8 tetracyanoquinodimethane (TCNQ) to form charge transfer complexes. The complexes were evaluated spectrophotometrically at 520 and 824 nm for ChA and TCNQ, respectively. The optimum conditions for the reaction were determined and optimized. The developed method was compared with Japanese Pharmacopeia method. Results: The calibration curve was linear in the ranges 25 – 125 and 30 – 150 μg/mL for ChA and TCNQ, respectively. The lower limit of detection was 8.0 and 10.0 μg/mL for ChA and TCNQ, respectively while the slope and intercept of the calibration curves were 0.0025 and 0.011 and 0.0115 and -0.237, for ChA and TCNQ, respectively. Conclusion: The developed methods for tofisopam have good accuracy and precision, and comparable to a standard pharmacopeial method. The methods can be applied for routine analysis and in quality control.
Resumo:
A simple method developed for genomic DNA isolation from fungus was tested on the red alga, Gelidium sesquipedale (Clem.) Born et Thur., which is commercially exploited for its high sulfated polysaccharide (agar) content. This method is faster, cheaper, and less toxic than conventional phenol/chloroform methods. Random amplified polymorphic DNA (RAPD) amplifications were performed successfully without the necessity of purifying the DNA. RAPD markers were used to investigate the genetic similarity among three natural populations of G. sesquipedale from southern Portugal. Bulked-genomic DNA samples of 15 different individuals were made in each population. These can be conceived of as a sample of the population DNA. Of the 62 primers screened, 41 produced bands and 22 revealed polymorphisms. Genetic similarities among populations were high. Populations that are further away from each other have the lowest similarity coefficients, whereas the intermediate Ingrina population, located on the south coast, showed higher genetic similarity with the Odeceixe population located on the southwest coast, than with the Sao Rafael southern population. This suggests a higher genetic flow between Odeceixe and Ingrina or the result may be a founder effect in the sense that the species has propagated from the east coast to the south coast of Portugal. We conclude that the use of this isolation method with RAPD analysis is appropriate to characterize the genetic variability of this commercial species along its geographical distribution. Large sample sizes can be screened at a relatively low cost. Finding genetic markers for commercial populations of C. sesquipedale may be of industrial interest.
Resumo:
Water injection is the most widely used method for supplementary recovery in many oil fields due to various reasons, like the fact that water is an effective displacing agent of low viscosity oils, the water injection projects are relatively simple to establish and the water availability at a relatively low cost. For design of water injection projects is necessary to do reservoir studies in order to define the various parameters needed to increase the effectiveness of the method. For this kind of study can be used several mathematical models classified into two general categories: analytical or numerical. The present work aims to do a comparative analysis between the results presented by flow lines simulator and conventional finite differences simulator; both types of simulators are based on numerical methods designed to model light oil reservoirs subjected to water injection. Therefore, it was defined two reservoir models: the first one was a heterogeneous model whose petrophysical properties vary along the reservoir and the other one was created using average petrophysical properties obtained from the first model. Comparisons were done considering that the results of these two models were always in the same operational conditions. Then some rock and fluid parameters have been changed in both models and again the results were compared. From the factorial design, that was done to study the sensitivity analysis of reservoir parameters, a few cases were chosen to study the role of water injection rate and the vertical position of wells perforations in production forecast. It was observed that the results from the two simulators are quite similar in most of the cases; differences were found only in those cases where there was an increase in gas solubility ratio of the model. Thus, it was concluded that in flow simulation of reservoirs analogous of those now studied, mainly when the gas solubility ratio is low, the conventional finite differences simulator may be replaced by flow lines simulator the production forecast is compatible but the computational processing time is lower.
Resumo:
The continual eruptive activity, occurrence of an ancestral catastrophic collapse, and inherent geologic features of Pacaya volcano (Guatemala) demands an evaluation of potential collapse hazards. This thesis merges techniques in the field and laboratory for a better rock mass characterization of volcanic slopes and slope stability evaluation. New field geological, structural, rock mechanical and geotechnical data on Pacaya is reported and is integrated with laboratory tests to better define the physical-mechanical rock mass properties. Additionally, this data is used in numerical models for the quantitative evaluation of lateral instability of large sector collapses and shallow landslides. Regional tectonics and local structures indicate that the local stress regime is transtensional, with an ENE-WSW sigma 3 stress component. Aligned features trending NNW-SSE can be considered as an expression of this weakness zone that favors magma upwelling to the surface. Numerical modeling suggests that a large-scale collapse could be triggered by reasonable ranges of magma pressure (greater than or equal to 7.7 MPa if constant along a central dyke) and seismic acceleration (greater than or equal to 460 cm/s2), and that a layer of pyroclastic deposits beneath the edifice could have been a factor which controlled the ancestral collapse. Finally, the formation of shear cracks within zones of maximum shear strain could provide conduits for lateral flow, which would account for long lava flows erupted at lower elevations.
Resumo:
The main objective for physics based modeling of the power converter components is to design the whole converter with respect to physical and operational constraints. Therefore, all the elements and components of the energy conversion system are modeled numerically and combined together to achieve the whole system behavioral model. Previously proposed high frequency (HF) models of power converters are based on circuit models that are only related to the parasitic inner parameters of the power devices and the connections between the components. This dissertation aims to obtain appropriate physics-based models for power conversion systems, which not only can represent the steady state behavior of the components, but also can predict their high frequency characteristics. The developed physics-based model would represent the physical device with a high level of accuracy in predicting its operating condition. The proposed physics-based model enables us to accurately develop components such as; effective EMI filters, switching algorithms and circuit topologies [7]. One of the applications of the developed modeling technique is design of new sets of topologies for high-frequency, high efficiency converters for variable speed drives. The main advantage of the modeling method, presented in this dissertation, is the practical design of an inverter for high power applications with the ability to overcome the blocking voltage limitations of available power semiconductor devices. Another advantage is selection of the best matching topology with inherent reduction of switching losses which can be utilized to improve the overall efficiency. The physics-based modeling approach, in this dissertation, makes it possible to design any power electronic conversion system to meet electromagnetic standards and design constraints. This includes physical characteristics such as; decreasing the size and weight of the package, optimized interactions with the neighboring components and higher power density. In addition, the electromagnetic behaviors and signatures can be evaluated including the study of conducted and radiated EMI interactions in addition to the design of attenuation measures and enclosures.
Resumo:
Ao longo de sua história a região do Vale Inferior do Tejo VIT foi abalada por vários sismos consideravelmente destrutivas, tendo alguns deles produzido significativas deformações nas estruturas marítimas localizadas no litoral a sudoeste do território Português; outros, moderados, foram produzidos por fontes locais, como os de 1344, 1531 e 1909. Nos últimos anos, devido à melhoria dos modelos de estrutura 3D e o desenvolvimento dos métodos numéricos, foram elaborados vários estudos de síntese de movimento forte do solo para a região do Baixo Tejo utilizando o método de diferenças finitas. Para confirmar o modelo de velocidades desta bacia usámos medidas de ruído sísmico, aplicámos um método baseado na razão espectral H/V, e, a partir destas curvas, por inversão, obtivemos um modelo de velocidades para a região estudada. Os resultados revelam uma boa concordância entre o modelo obtido e os dados geofísicos e geológicos recolhidos na mesma área._ ABSTRACT: Along his history the Lower Tagus Valley (LTV) area was shaken by several earthquakes. The largest reported had their origin in the southwestern part of Iberia. Other moderate earthquakes were produced by local sources such as the 1344, 1531 and the 1909. ln the last years, due to 3D structural model improvement and development in numerical methods, several studies have successful obtained strong-ground motion synthesis for the LVT region using finite difference method. To confirm the velocity model of the LTV sedimentary basin obtained by geophysical and geological data, we use broad-band microtremor measurements and application of the horizontal to vertical (H/V) spectral ratio method. We have obtained a velocity model for the studied region by inversion of the H/V curve. The results have good agreement geological and geophysical data.