964 resultados para Harmonic voltages
Resumo:
We demonstrate the capability of ab initio time-dependent R-matrix theory to obtain accurate harmonic generation spectra of noble-gas atoms at near-IR wavelengths between 1200 and 1800 nm and peak intensities up to 1.8 × 10^(14) W/cm^(2). To accommodate the excursion length of the ejected electron, we use an angular-momentum expansion up to Lmax=279. The harmonic spectra show evidence of atomic structure through the presence of a Cooper minimum in harmonic generation for Kr, and of multielectron interaction through the giant resonance for Xe. The theoretical spectra agree well with those obtained experimentally.
Resumo:
This work proposes a extends a novel approach to compute tran sonic Limit Cycle Oscillations using high fidelity analysis. CFD based Harmonic Balance methods have proven to be efficient tools to predict periodic phenomena. This paper’s contribution is to present a methodology to determine the unknown frequency of oscillations using an implicit for- mulation of the HB method to accurately capture Limit Cycle Oscillations (LCOs); this is achieved by defining a frequency updating procedure based on a coupled CFD/CSD Harmonic Balance formulation to find the LCO condition. A pitch/plunge aerofoil and respective linear structural models is used to exercise the new method. Results show consistent agreement between the proposed and time-marching methods for both LCO amplitude and frequency.
Resumo:
This work investigates limit cycle oscillations in the transonic regime. A novel approach to predict Limit Cycle Oscillations using high fidelity analysis is exploited to accelerate calculations. The method used is an Aeroeasltic Harmonic Balance approach, which has been proven to be efficient and able to predict periodic phenomena. The behaviour of limit cycle oscillations is analysed using uncertainty quantification tools based on polynomial chaos expansions. To improve the efficiency of the sampling process for the polynomial-chaos expansions an adaptive sampling procedure is used. These methods are exercised using two problems: a pitch/plunge aerofoil and a delta-wing. Results indicate that Mach n. variability is determinant to the amplitude of the LCO for the 2D test case, whereas for the wing case analysed here, variability in the Mach n. has an almost negligible influence in amplitude variation and the LCO frequency variability has an almost linear relation with Mach number. Further test cases are required to understand the generality of these results.
Resumo:
The Harmonic Balance method is an attractive solution for computing periodic responses and can be an alternative to time domain methods, at a reduced computational cost. The current paper investigates using a Harmonic Balance method for simulating limit cycle oscillations under uncertainty. The Harmonic Balance method is used in conjunction with a non-intrusive polynomial-chaos approach to propagate variability and is validated against Monte Carlo analysis. Results show the potential of the approach for a range of nonlinear dynamical systems, including a full wing configuration exhibiting supercritical and subcritical bifurcations, at a fraction of the cost of performing time domain simulations.
High-Efficiency Harmonic-Peaking Class-EF Power Amplifiers with Enhanced Maximum Operating Frequency
Resumo:
The recently introduced Class-EF power amplifier (PA) has a peak switch voltage lower than that of the Class-E PA. However, the value of the transistor output capacitance at high frequencies is typically larger than the required Class-EF optimum shunt capacitance. Consequently, soft-switching operation that minimizes power dissipation during off-to-on transition cannot be achieved at high frequencies. Two new Class-EF PA variants with transmission-line load networks, namely, third-harmonic-peaking (THP) and fifth-harmonic-peaking (FHP) Class-EF PAs are proposed in this paper. These permit operation at higher frequencies at no expense to other PA figures of merit. Analytical expressions are derived in order to obtain circuit component values, which satisfy the required Class-EF impedances at fundamental frequency, all even harmonics, and the first few odd harmonics as well as simultaneously providing impedance matching to a 50- Ω load. Furthermore, a novel open-circuit and shorted stub arrangement, which has substantial practical benefits, is proposed to replace the normal quarter-wave line connected at the transistor's drain. Using GaN HEMTs, two PA prototypes were built. Measured peak drain efficiency of 91% and output power of 39.5 dBm were obtained at 2.22 GHz for the THP Class-EF PA. The FHP Class-EF PA delivered output power of 41.9 dBm with 85% drain efficiency at 1.52 GHz.
Resumo:
High-order harmonics and attosecond pulses of light can be generated when ultraintense, ultrashort laser pulses reflect off a solid-density plasma with a sharp vacuum interface, i.e., a plasma mirror. We demonstrate experimentally the key influence of the steepness of the plasma-vacuum interface on the interaction, by measuring the spectral and spatial properties of harmonics generated on a plasma mirror whose initial density gradient scale length L is continuously varied. Time-resolved interferometry is used to separately measure this scale length.
Resumo:
Intense, femtosecond laser interactions with blazed grating targets are studied through experiment and particle-in-cell (PIC) simulations. The high harmonic spectrum produced by the laser is angularly dispersed by the grating leading to near-monochromatic spectra emitted at different angles, each dominated by a single harmonic and its integer-multiples. The spectrum emitted in the direction of the third-harmonic diffraction order is measured to contain distinct peaks at the 9th and 12th harmonics which agree well with two-dimensional PIC simulations using the same grating geometry. This confirms that surface smoothing effects do not dominate the far-field distributions for surface features with sizes on the order of the grating grooves whilst also showing this to be a viable method of producing near-monochromatic, short-pulsed extreme-ultraviolet radiation.
Resumo:
Harmonic generation in the limit of ultrasteep density gradients is studied experimentally. Observations reveal that, while the efficient generation of high order harmonics from relativistic surfaces requires steep plasma density scale lengths (L-p/lambda <1), the absolute efficiency of the harmonics declines for the steepest plasma density scale length L-p -> 0, thus demonstrating that near-steplike density gradients can be achieved for interactions using high-contrast high-intensity laser pulses. Absolute photon yields are obtained using a calibrated detection system. The efficiency of harmonics reflected from the laser driven plasma surface via the relativistic oscillating mirror was estimated to be in the range of 10(-4)-10(-6) of the laser pulse energy for photon energies ranging from 20-40 eV, with the best results being obtained for an intermediate density scale length.
Resumo:
Attosecond science is enabled by the ability to convert femtosecond near-infrared laser light into coherent harmonics in the extreme ultraviolet spectral range. While attosecond sources have been utilized in experiments that have not demanded high intensities, substantially higher photon flux would provide a natural link to the next significant experimental breakthrough. Numerical simulations of dual-gas high harmonic generation indicate that the output in the cutoff spectral region can be selectively enhanced without disturbing the single-atom gating mechanism. Here, we summarize the results of these simulations and present first experimental findings to support these predictions. (c) 2012 Optical Society of America
Resumo:
Experimental results on relativistic surface HHG at a repetition rate of 10 Hz are presented. Average powers in the 10?W range are generated in the spectral range of 51 to 26 nm (24-48 eV). The surface harmonic radiation is produced by focusing the second-harmonic of a high-power laser onto a rotating glass surface to moderately relativistic intensities of 3×10 19Wcm ?2. The harmonic emission exhibits a divergence of 26 mrad. Together with absolute photon numbers recorded by a calibrated spectrometer, this allows for the determination of the extreme ultraviolet (XUV) yield. The pulse energies of individual harmonics are reaching up to the μJ level, equivalent to an efficiency of 10 ?5. The capability of producing stable and intense high-harmonic radiation from relativistic surface plasmas may facilitate experiments on nonlinear ionization or the seeding of free-electron lasers. © IOP Publishing Ltd and Deutsche Physikalische Gesellschaft.
Resumo:
TiO2 photocatalysis is a promising technology for the destruction of organic pollutants in both waste and potable waters with the mineralisation of a wide range of compounds having been reported. TiO 2 has many advantages over other semiconductors, it is highly photoreactive, cheap, non-toxic, chemically and biologically inert, and photostable. The photocatalytic activity of TiO2 has been shown to depend upon many criteria including the ratio of anatase/rutile crystal phase, particle size and oxidation state. This paper reports the use of optical surface second harmonic generation (SSHG) to monitor modifications in TiO 2 powder induced following laser treatment. SSHG is a non-contact, non-destructive technique, which is highly sensitive to both surface chemical and physical changes. Results show that three different SSH intensities were observable as the TiO2 samples were irradiated with the laser light. These regions were related to changes in chemical characteristics and particle size of the TiO2 powder
Resumo:
We demonstrate for the first time that fine varying of the density gradient of a plasma mirror along with laser spatial phase on target allows total control over the harmonic generation mechanisms and harmonic spatial properties. An analytical model is also proposed. © OSA 2013.
Resumo:
Ultrashort, high contrast laser pulses when focused to high intensity and reflected from a steep solid density 'plasma mirror (PM)' contain coherent XUV radiation in the form of high-order harmonics. The emission can either be due to the relativistically driven oscillating PM (ROM) [1] or due to Coherent wake emission (CWE) [2]. Selective control over the mechanisms and the characteristics of these harmonics and understanding the physics is crucial for the development of intense attosecond light sources. © 2013 IEEE.
Resumo:
We present a new dual-gas multi-jet HHG source which can be perfectly controlled via phasematching of the long and short trajectory contributions and is applicable for high average power driver laser systems. © 2011 Optical Society of America.