981 resultados para Halley’s and Euler-Chebyshev’s Methods
Resumo:
Signed by: Mabel Parton.
Resumo:
"2 August 1957."
Resumo:
Issued Nov. 1978.
Resumo:
Mode of access: Internet.
Resumo:
Thesis (Master's)--University of Washington, 2016-06
Resumo:
Biologists are increasingly conscious of the critical role that noise plays in cellular functions such as genetic regulation, often in connection with fluctuations in small numbers of key regulatory molecules. This has inspired the development of models that capture this fundamentally discrete and stochastic nature of cellular biology - most notably the Gillespie stochastic simulation algorithm (SSA). The SSA simulates a temporally homogeneous, discrete-state, continuous-time Markov process, and of course the corresponding probabilities and numbers of each molecular species must all remain positive. While accurately serving this purpose, the SSA can be computationally inefficient due to very small time stepping so faster approximations such as the Poisson and Binomial τ-leap methods have been suggested. This work places these leap methods in the context of numerical methods for the solution of stochastic differential equations (SDEs) driven by Poisson noise. This allows analogues of Euler-Maruyuma, Milstein and even higher order methods to be developed through the Itô-Taylor expansions as well as similar derivative-free Runge-Kutta approaches. Numerical results demonstrate that these novel methods compare favourably with existing techniques for simulating biochemical reactions by more accurately capturing crucial properties such as the mean and variance than existing methods.
Resumo:
The timeline imposed by recent worldwide chemical legislation is not amenable to conventional in vivo toxicity testing, requiring the development of rapid, economical in vitro screening strategies which have acceptable predictive capacities. When acquiring regulatory neurotoxicity data, distinction on whether a toxic agent affects neurons and/or astrocytes is essential. This study evaluated neurofilament (NF) and glial fibrillary acidic protein (GFAP) directed single-cell (S-C) ELISA and flow cytometry as methods for distinguishing cell-specific cytoskeletal responses, using the established human NT2 neuronal/astrocytic (NT2.N/A) co-culture model and a range of neurotoxic (acrylamide, atropine, caffeine, chloroquine, nicotine) and non-neurotoxic (chloramphenicol, rifampicin, verapamil) test chemicals. NF and GFAP directed flow cytometry was able to identify several of the test chemicals as being specifically neurotoxic (chloroquine, nicotine) or astrocytoxic (atropine, chloramphenicol) via quantification of cell death in the NT2.N/A model at cytotoxic concentrations using the resazurin cytotoxicity assay. Those neurotoxicants with low associated cytotoxicity are the most significant in terms of potential hazard to the human nervous system. The NF and GFAP directed S-C ELISA data predominantly demonstrated the known neurotoxicants only to affect the neuronal and/or astrocytic cytoskeleton in the NT2.N/A cell model at concentrations below those affecting cell viability. This report concluded that NF and GFAP directed S-C ELISA and flow cytometric methods may prove to be valuable additions to an in vitro screening strategy for differentiating cytotoxicity from specific neuronal and/or astrocytic toxicity. Further work using the NT2.N/A model and a broader array of toxicants is appropriate in order to confirm the applicability of these methods.
Resumo:
This thesis is an exploration of the organisation and functioning of the human visual system using the non-invasive functional imaging modality magnetoencephalography (MEG). Chapters one and two provide an introduction to the ‘human visual system and magnetoencephalographic methodologies. These chapters subsequently describe the methods by which MEG can be used to measure neuronal activity from the visual cortex. Chapter three describes the development and implementation of novel analytical tools; including beamforming based analyses, spectrographic movies and an optimisation of group imaging methods. Chapter four focuses on the use of established and contemporary analytical tools in the investigation of visual function. This is initiated with an investigation of visually evoked and induced responses; covering visual evoked potentials (VEPs) and event related synchronisation/desynchronisation (ERS/ERD). Chapter five describes the employment of novel methods in the investigation of cortical contrast response and demonstrates distinct contrast response functions in striate and extra-striate regions of visual cortex. Chapter six use synthetic aperture magnetometry (SAM) to investigate the phenomena of visual cortical gamma oscillations in response to various visual stimuli; concluding that pattern is central to its generation and that it increases in amplitude linearly as a function of stimulus contrast, consistent with results from invasive electrode studies in the macaque monkey. Chapter seven describes the use of driven visual stimuli and tuned SAM methods in a pilot study of retinotopic mapping using MEG; finding that activity in the primary visual cortex can be distinguished in four quadrants and two eccentricities of the visual field. Chapter eight is a novel implementation of the SAM beamforming method in the investigation of a subject with migraine visual aura; the method reveals desynchronisation of the alpha and gamma frequency bands in occipital and temporal regions contralateral to observed visual abnormalities. The final chapter is a summary of main conclusions and suggested further work.
Resumo:
Silicon carbide ceramics are candidate materials for use in aggressive environments, including those where aqueous acids are present. Standard corrosion testing methods such as immersion testing are not always sufficiently sensitive for these ceramics owing to the very low, almost unobservable, corrosion rates encountered. Using electrochemical methods the corrosion processes can be assisted, leading to higher rates and thus the elucidation of reaction mechanisms. The behaviour of a sintered and a reaction bonded silicon carbide has been investigated in aqueous HCl, HF, HNO3, and H2SO4, using standard immersion and new electrochemical methods. Both materials were passive in HCl, HNO3, and H2SO4 because of the formation of a surface silica film, and were active in HF. In HF, corrosion of sintered silicon carbide was slight and the residual silicon was removed from reaction bonded specimens.
Resumo:
This work is supported by the Hungarian Scientific Research Fund (OTKA), grant T042706.
Resumo:
* The work is partially supported by Grant no. NIP917 of the Ministry of Science and Education – Republic of Bulgaria.
Resumo:
A cikk a páros összehasonlításokon alapuló pontozási eljárásokat tárgyalja axiomatikus megközelítésben. A szakirodalomban számos értékelő függvényt javasoltak erre a célra, néhány karakterizációs eredmény is ismert. Ennek ellenére a megfelelő módszer kiválasztása nem egy-szerű feladat, a különböző tulajdonságok bevezetése elsősorban ebben nyújthat segítséget. Itt az összehasonlított objektumok teljesítményén érvényesülő monotonitást tárgyaljuk az önkonzisztencia és önkonzisztens monotonitás axiómákból kiindulva. Bemutatásra kerülnek lehetséges gyengítéseik és kiterjesztéseik, illetve egy, az irreleváns összehasonlításoktól való függetlenséggel kapcsolatos lehetetlenségi tétel is. A tulajdonságok teljesülését három eljárásra, a klasszikus pontszám eljárásra, az ezt továbbfejlesztő általánosított sorösszegre és a legkisebb négyzetek módszerére vizsgáljuk meg, melyek mindegyike egy lineáris egyenletrendszer megoldásaként számítható. A kapott eredmények új szempontokkal gazdagítják a pontozási eljárás megválasztásának kérdését. _____ The paper provides an axiomatic analysis of some scoring procedures based on paired comparisons. Several methods have been proposed for these generalized tournaments, some of them have been also characterized by a set of properties. The choice of an appropriate method is supported by a discussion of their theoretical properties. In the paper we focus on the connections of self-consistency and self-consistent-monotonicity, two axioms based on the comparisons of object's performance. The contradiction of self-consistency and independence of irrel-evant matches is revealed, as well as some possible reductions and extensions of these properties. Their satisfiability is examined through three scoring procedures, the score, generalised row sum and least squares methods, each of them is calculated as a solution of a system of linear equations. Our results contribute to the problem of finding a proper paired comparison based scoring method.
Resumo:
The focus of this work is to develop and employ numerical methods that provide characterization of granular microstructures, dynamic fragmentation of brittle materials, and dynamic fracture of three-dimensional bodies.
We first propose the fabric tensor formalism to describe the structure and evolution of lithium-ion electrode microstructure during the calendaring process. Fabric tensors are directional measures of particulate assemblies based on inter-particle connectivity, relating to the structural and transport properties of the electrode. Applying this technique to X-ray computed tomography of cathode microstructure, we show that fabric tensors capture the evolution of the inter-particle contact distribution and are therefore good measures for the internal state of and electronic transport within the electrode.
We then shift focus to the development and analysis of fracture models within finite element simulations. A difficult problem to characterize in the realm of fracture modeling is that of fragmentation, wherein brittle materials subjected to a uniform tensile loading break apart into a large number of smaller pieces. We explore the effect of numerical precision in the results of dynamic fragmentation simulations using the cohesive element approach on a one-dimensional domain. By introducing random and non-random field variations, we discern that round-off error plays a significant role in establishing a mesh-convergent solution for uniform fragmentation problems. Further, by using differing magnitudes of randomized material properties and mesh discretizations, we find that employing randomness can improve convergence behavior and provide a computational savings.
The Thick Level-Set model is implemented to describe brittle media undergoing dynamic fragmentation as an alternative to the cohesive element approach. This non-local damage model features a level-set function that defines the extent and severity of degradation and uses a length scale to limit the damage gradient. In terms of energy dissipated by fracture and mean fragment size, we find that the proposed model reproduces the rate-dependent observations of analytical approaches, cohesive element simulations, and experimental studies.
Lastly, the Thick Level-Set model is implemented in three dimensions to describe the dynamic failure of brittle media, such as the active material particles in the battery cathode during manufacturing. The proposed model matches expected behavior from physical experiments, analytical approaches, and numerical models, and mesh convergence is established. We find that the use of an asymmetrical damage model to represent tensile damage is important to producing the expected results for brittle fracture problems.
The impact of this work is that designers of lithium-ion battery components can employ the numerical methods presented herein to analyze the evolving electrode microstructure during manufacturing, operational, and extraordinary loadings. This allows for enhanced designs and manufacturing methods that advance the state of battery technology. Further, these numerical tools have applicability in a broad range of fields, from geotechnical analysis to ice-sheet modeling to armor design to hydraulic fracturing.
A New Method for Modeling Free Surface Flows and Fluid-structure Interaction with Ocean Applications
Resumo:
The computational modeling of ocean waves and ocean-faring devices poses numerous challenges. Among these are the need to stably and accurately represent both the fluid-fluid interface between water and air as well as the fluid-structure interfaces arising between solid devices and one or more fluids. As techniques are developed to stably and accurately balance the interactions between fluid and structural solvers at these boundaries, a similarly pressing challenge is the development of algorithms that are massively scalable and capable of performing large-scale three-dimensional simulations on reasonable time scales. This dissertation introduces two separate methods for approaching this problem, with the first focusing on the development of sophisticated fluid-fluid interface representations and the second focusing primarily on scalability and extensibility to higher-order methods.
We begin by introducing the narrow-band gradient-augmented level set method (GALSM) for incompressible multiphase Navier-Stokes flow. This is the first use of the high-order GALSM for a fluid flow application, and its reliability and accuracy in modeling ocean environments is tested extensively. The method demonstrates numerous advantages over the traditional level set method, among these a heightened conservation of fluid volume and the representation of subgrid structures.
Next, we present a finite-volume algorithm for solving the incompressible Euler equations in two and three dimensions in the presence of a flow-driven free surface and a dynamic rigid body. In this development, the chief concerns are efficiency, scalability, and extensibility (to higher-order and truly conservative methods). These priorities informed a number of important choices: The air phase is substituted by a pressure boundary condition in order to greatly reduce the size of the computational domain, a cut-cell finite-volume approach is chosen in order to minimize fluid volume loss and open the door to higher-order methods, and adaptive mesh refinement (AMR) is employed to focus computational effort and make large-scale 3D simulations possible. This algorithm is shown to produce robust and accurate results that are well-suited for the study of ocean waves and the development of wave energy conversion (WEC) devices.
Resumo:
Harmful algal blooms (HABs) are a natural global phenomena emerging in severity and extent. Incidents have many economic, ecological and human health impacts. Monitoring and providing early warning of toxic HABs are critical for protecting public health. Current monitoring programmes include measuring the number of toxic phytoplankton cells in the water and biotoxin levels in shellfish tissue. As these efforts are demanding and labour intensive, methods which improve the efficiency are essential. This study compares the utilisation of a multitoxin surface plasmon resonance (multitoxin SPR) biosensor with enzyme-linked immunosorbent assay (ELISA) and analytical methods such as high performance liquid chromatography with fluorescence detection (HPLC-FLD) and liquid chromatography–tandem mass spectrometry (LC–MS/MS) for toxic HAB monitoring efforts in Europe. Seawater samples (n = 256) from European waters, collected 2009–2011, were analysed for biotoxins: saxitoxin and analogues, okadaic acid and dinophysistoxins 1/2 (DTX1/DTX2) and domoic acid responsible for paralytic shellfish poisoning (PSP), diarrheic shellfish poisoning (DSP) and amnesic shellfish poisoning (ASP), respectively. Biotoxins were detected mainly in samples from Spain and Ireland. France and Norway appeared to have the lowest number of toxic samples. Both the multitoxin SPR biosensor and the RNA microarray were more sensitive at detecting toxic HABs than standard light microscopy phytoplankton monitoring. Correlations between each of the detection methods were performed with the overall agreement, based on statistical 2 × 2 comparison tables, between each testing platform ranging between 32% and 74% for all three toxin families illustrating that one individual testing method may not be an ideal solution. An efficient early warning monitoring system for the detection of toxic HABs could therefore be achieved by combining both the multitoxin SPR biosensor and RNA microarray.