966 resultados para HOST-PARASITE INTERPLAY
Resumo:
Plant resistance proteins (R proteins) recognize corresponding pathogen avirulence (Avr) proteins either indirectly through detection of changes in their host protein targets or through direct R-Avr protein interaction. Although indirect recognition imposes selection against Avr effector function, pathogen effector molecules recognized through direct interaction may overcome resistance through sequence diversification rather than loss of function. Here we show that the flax rust fungus AvrLS67 genes, whose products are recognized by the L5, L6, and L7 R proteins of flax, are highly diverse, with 12 sequence variants identified from six rust strains. Seven AvrL567 variants derived from Avr alleles induce necrotic responses when expressed in flax plants containing corresponding resistance genes (R genes), whereas five variants from avr alleles do not. Differences in recognition specificity between AvA567 variants and evidence for diversifying selection acting on these genes suggest they have been involved in a gene-specific arms race with the corresponding flax R genes. Yeast two-hybrid assays indicate that recognition is based on direct R-Avr protein interaction and recapitulate the interaction specificity observed in planta. Biochemical analysis of Escherichia coli-produced AvrL567 proteins shows that variants that escape recognition nevertheless maintain a conserved structure and stability, suggesting that the amino acid sequence differences directly affect the R-Avr protein interaction. We suggest that direct recognition associated with high genetic diversity at corresponding R and Avr gene loci represents an alternative outcome of plant-pathogen coevolution to indirect recognition associated with simple balanced polymorphisms for functional and nonfunctional R and Avr genes.
Resumo:
Acknowledgements This study was funded by a BBSRC studentship (MA Wenzel) and NERC grants NE/H00775X/1 and NE/D000602/1 (SB Piertney). The authors are grateful to Fiona Leckie, Andrew MacColl, Jesús Martínez-Padilla, François Mougeot, Steve Redpath, Pablo Vergara† and Lucy M.I. Webster for samples; Keliya Bai, Daisy Brickhill, Edward Graham, Alyson Little, Daniel Mifsud, Lizzie Molyneux and Mario Röder for fieldwork assistance; Gillian Murray-Dickson and Laura Watt for laboratory assistance; Heather Ritchie for helpful comments on manuscript drafts; and all estate owners, factors and keepers for access to field sites, most particularly Stuart Young and Derek Calder (Edinglassie), Simon Blackett, Jim Davidson and Liam Donald (Invercauld and Glas Choille), Richard Cooke and Fred Taylor† (Invermark) and T. Helps (Catterick).
Resumo:
Schistosomiasis, caused by blood flukes of the genus Schistosoma, is a major public health problem which contributes substantially to the economic and financial burdens of many nations in the developing world. An array of survival strategies, such as the unique structure of the tegument which acts as a major host-parasite interface, immune modulation mechanisms, gene regulation, and apoptosis and self-renewal have been adopted by schistosome parasites over the course of long-term evolution with their mammalian definitive hosts. Recent generation of complete schistosome genomes together with numerous biological, immunological, high-throughput "-omics" and gene function studies have revealed the Tao or strategies that schistosomes employ not only to promote long-term survival, but also to ensure effective life cycle transmission. New scenarios for the future control of this important neglected tropical disease will present themselves as our understanding of these Tao increases.
Resumo:
Serine protease inhibitors (serpin) play essential roles in many organisms. Mammalian serpins regulate the blood coagulation, fibrinolysis, inflammation and complement activation pathways. In parasitic helminths, serpins are less well characterized, but may also be involved in evasion of the host immune response. In this study, a Schistosoma japonicum serpin (SjB10), containing a 1212 bp open reading frame (ORF), was cloned, expressed and functionally characterized. Sequence analysis, comparative modelling and structural-based alignment revealed that SjB10 contains the essential structural motifs and consensus secondary structures of inhibitory serpins. Transcriptional profiling demonstrated that SjB10 is expressed in adult males, schistosomula and eggs but particularly in the cercariae, suggesting a possible role in cercarial penetration of mammalian host skin. Recombinant SjB10 (rSjB10) inhibited pancreatic elastase (PE) in a dose-dependent manner. rSjB10 was recognized strongly by experimentally infected rat sera indicating that native SjB10 is released into host tissue and induces an immune response. By immunochemistry, SjB10 localized in the S. japonicum adult foregut and extra-embryonic layer of the egg. This study provides a comprehensive demonstration of sequence and structural-based analysis of a functional S. japonicum serpin. Furthermore, our findings suggest that SjB10 may be associated with important functional roles in S. japonicum particularly in host-parasite interactions.
Resumo:
The quite recent discovery that parasites release extracellular vesicles (EVs) that can transfer a range of effector molecules to host cells has made us re-think our understanding of the host-parasite interface. In this opinion article we will consider how recent proteomics and transcriptomics studies, together with ultrastructural observations, suggest that more than one mechanism of EV biogenesis can occur in helminths. We propose that distinct EV sub-types have roles in immune-modulation and repair of drug-induced damage, and put forward the case for targeting EV biogenesis pathways to achieve parasite control. In doing so we raise a number of outstanding research questions that must be addressed before this can happen.
Resumo:
Relationship between organisms within an ecosystem is one of the main focuses in the study of ecology and evolution. For instance, host-parasite interactions have long been under close interest of ecology, evolutionary biology and conservation science, due to great variety of strategies and interaction outcomes. The monogenean ecto-parasites consist of a significant portion of flatworms. Gyrodactylus salaris is a monogenean freshwater ecto-parasite of Atlantic salmon (Salmo salar) whose damage can make fish to be prone to further bacterial and fungal infections. G. salaris is the only one parasite whose genome has been studied so far. The RNA-seq data analyzed in this thesis has already been annotated by using LAST. The RNA-seq data was obtained from Illumina sequencing i.e. yielded reads were assembled into 15777 transcripts. Last resulted in annotation of 46% transcripts and remaining were left unknown. This thesis work was started with whole data and annotation process was continued by the use of PANNZER, CDD and InterProScan. This annotation resulted in 56% successfully annotated sequences having parasite specific proteins identified. This thesis represents the first of Monogenean transcriptomic information which gives an important source for further research on this specie. Additionally, comparison of annotation methods interestingly revealed that description and domain based methods perform better than simple similarity search methods. Therefore it is more likely to suggest the use of these tools and databases for functional annotation. These results also emphasize the need for use of multiple methods and databases. It also highlights the need of more genomic information related to G. salaris.
Resumo:
Bivalve aquaculture is seriously affected by many bacterial pathogens that cause high losses in hatcheries as well as in natural beds. A number of Vibrio species, but also members of the genera Nocardia and Roseovarius, are considered important pathogens in aquaculture. The present work provides an updated overview of main diseases and implicated bacterial species affecting bivalves. This review focuses on aetiological agents, their diversity and virulence factors, the diagnostic methods available as well as information on the dynamics of the host-parasite relationship.
Resumo:
This review summarizes the research progress made over the past decade in the field of gastropod immunity resulting from investigations of the interaction between the snail Biomphalaria glabrata and its trematode parasites. A combination of integrated approaches, including cellular, genetic and comparative molecular and proteomic approaches have revealed novel molecular components involved in mediating Biomphalaria immune responses that provide insights into the nature of host-parasite compatibility and the mechanisms involved in parasite recognition and killing. The current overview emphasizes that the interaction between B. glabrata and its trematode parasites involves a complex molecular crosstalk between numerous antigens, immune receptors, effectors and anti-effector systems that are highly diverse structurally and extremely variable in expression between and within host and parasite populations. Ultimately, integration of these molecular signals will determine the outcome of a specific interaction between a B. glabrata individual and its interacting trematodes. Understanding these complex molecular interactions and identifying key factors that may be targeted to impairment of schistosome development in the snail host is crucial to generating new alternative schistosomiasis control strategies.
Resumo:
An impedance method was developed to determine how immune system cells (hemocyte) interact with intruder cells (parasites). When the hemocyte cells interact with the parasites, they cause a defensive reaction and the parasites start to aggregate in clusters. The level of aggregation is a measure of the host-parasite interaction, and provides information about the efficiency of the immune system response. The cell aggregation is monitored using a set of microelectrodes. The impedance spectrum is measured between each individual microelectrode and a large reference electrode. As the cells starts to aggregate and settle down towards the microelectrode array the impedance of the system is changed. It is shown that the system impedance is very sensitive to the level of cell aggregation and can be used to monitor in real time the interaction between hemocyte cells and parasites.
Resumo:
Clearing blood-stage malaria parasites without inducing major host pathology requires a finely tuned balance between pro- and anti-inflammatory responses. The interplay between regulatory T (Treg) cells and dendritic cells (DCs) is one of the key determinants of this balance. Although experimental models have revealed various patterns of Treg cell expansion, DC maturation, and cytokine production according to the infecting malaria parasite species, no studies have compared all of these parameters in human infections with Plasmodium falciparum and P. vivax in the same setting of endemicity. Here we show that during uncomplicated acute malaria, both species induced a significant expansion of CD4(+) CD25(+) Foxp3(+) Treg cells expressing the key immunomodulatory molecule CTLA-4 and a significant increase in the proportion of DCs that were plasmacytoid (CD123(+)), with a decrease in the myeloid/plasmacytoid DC ratio. These changes were proportional to parasite loads but correlated neither with the intensity of clinical symptoms nor with circulating cytokine levels. One-third of P. vivax-infected patients, but no P. falciparum-infected subjects, showed impaired maturation of circulating DCs, with low surface expression of CD86. Although vivax malaria patients overall had a less inflammatory cytokine response, with a higher interleukin-10 (IL-10)/tumor necrosis factor alpha (TNF-alpha) ratio, this finding did not translate to milder clinical manifestations than those of falciparum malaria patients. We discuss the potential implications of these findings for species-specific pathogenesis and longlasting protective immunity to malaria.
Resumo:
Since the discovery of Trypanosoma cruzi and the brilliant description of the then-referred to "new tripanosomiasis" by Carlos Chagas 100 years ago, a great deal of scientific effort and curiosity has been devoted to understanding how this parasite invades and colonises mammalian host cells. This is a key step in the survival of the parasite within the vertebrate host, and although much has been learned over this century, differences in strains or isolates used by different laboratories may have led to conclusions that are not as universal as originally interpreted. Molecular genotyping of the CL-Brener clone confirmed a genetic heterogeneity in the parasite that had been detected previously by other techniques, including zymodeme or schizodeme (kDNA) analysis. T. cruzi can be grouped into at least two major phylogenetic lineages: T. cruzi I, mostly associated with the sylvatic cycle and T. cruzi II, linked to human disease; however, a third lineage, T. cruziIII, has also been proposed. Hybrid isolates, such as the CL-Brener clone, which was chosen for sequencing the genome of the parasite (Elias et al. 2005, El Sayed et al. 2005a), have also been identified. The parasite must be able to invade cells in the mammalian host, and many studies have implicated the flagellated trypomastigotes as the main actor in this process. Several surface components of parasites and some of the host cell receptors with which they interact have been described. Herein, we have attempted to identify milestones in the history of understanding T. cruzi- host cell interactions. Different infective forms of T. cruzi have displayed unexpected requirements for the parasite to attach to the host cell, enter it, and translocate between the parasitophorous vacuole to its final cytoplasmic destination. It is noteworthy that some of the mechanisms originally proposed to be broad in function turned out not to be universal, and multiple interactions involving different repertoires of molecules seem to act in concert to give rise to a rather complex interplay of signalling cascades involving both parasite and cellular components.
Resumo:
The peritoneal cavity of laboratory mice was used to study the phenomenon of host cell adhesion to different evolutive stages of the Schistosoma mansoni (cercaria, adult worm, developing and mature eggs, miracidium, young and mature daughter sporocysts). Material recovered from the peritoneal cavity 30 and 180 min after the inoculation of each evolutive form was examined with the help of a stereomicroscope. The free swimming larvae (cercaria and miracidium), and the evolutive forms producing such larvae (mature egg and mature daughter sporocyst) elicited the host cell adhesion phenomenon. In all forms but cercariae the adherent cells remained as so till 180 minutes after inoculation
Resumo:
In this study we investigated the relationship between tambaqui fish (Colossoma macropomumi Cuvier 1818) and parasites in two fish farms (L204S and L180N) in the state of Rondônia, Brazil, during a 1-year period. The objective of the study was to describe the relationships between parasites, hosts and the environment. From the 80 fish specimens collected, 100% were parasitized by at least one parasite species. Seven ectoparasites species were recorded, six of the class Monogenea: Anacanthorus spathulatusi, Mymarothecium spp. (Mymarothecium sp. 1, Mymarothecium sp. 2 and M. viatorum), Notozothecium sp. and Linguadactyloides brinkimanni, classified as dominants, and the copepod Perulernaea gamitanae, classified as subordinate. Despite their high prevalence, the parasites were not abundant. A. spathulatus presented positive and significant correlations between the abundance of parasitism and the standard length of the hosts in the two fish farms; Mymarothecium spp. showed significant correlations, negative in L180N, and positive in L204S; significant positive correlations were observed for Notozothecium sp. in L204S, and for L.brinkimanni in L180N. Young monogeneans were found; these parasites presented a negative correlation in L180N and a significant negative correlation in L204S. The results of the correlation between the relative condition factor (Kn) and the abundance of parasites were not significant for the recorded parasite species. Regarding the hepatosomatic relation (HSR) of fish and the abundance of parasites, Anacanthorus spathulatusi showed a significant negative correlation with the HSR in L180N, and a positive correlation in L204S. Mymarothecium spp. and Notozothecium sp. presented significant positive correlations in L204S. Considering the correlation of the fish splenosomatic relation (SSR) and the abundance of parasites, L. brinkimanni presented significant correlations, positive in L180N and negative in L204S. Despite 100% prevalence, the high water quality contributes to infracommunities with low parasite abundance and good levels of Kn, HSR and SSR, allowing good tambaqui development.