776 resultados para HIGH ALLOY STEELS
Resumo:
Fe-B ultrafine amorphous alloy particles (UFAAP) were prepared by chemical reduction of Fe3+ with NaBHO4 and confirmed to be ultrafine amorphous particles by transmission electron microscopy and X-ray diffraction. The specific heat of the sample was measured by a high precision adiabatic calorimeter, and a differential scanning calorimeter was used for thermal stability analysis. A topological structure of Fe-B atoms is proposed to explain two crystallization peaks and a melting peak observed at T=600, 868 and 1645 K, respectively.
Resumo:
Ultra-fine particle of Ni-B amorphous alloy was prepared by chemical reduction of Ni2+ with NaBH4 and characterized with TEM and XRD. The heat capacity and thermal stability were measured with a high-precision automatic adiabatic calorimeter and DTA. The upper limit of applied temperature of the substance was found to be 684 K for use as catalyst. (C) 1999 Elsevier Science B.V. All rights reserved.
Resumo:
We present a novel method for preparing an ultra-uniform Raney-Ni catalyst, which includes melt-quenching, hydrogen treatment and leaching in an alkali solution. The resultant catalyst shows superior activity in the reaction of cyclohexanone hydrogenation. X-ray diffraction (XRD) and XPS have been employed to characterize the catalysts. As demonstrated, the pretreatment with hydrogen caused a distinct phase transfer of the Ni-Al alloys, forming more of the Ni2Al3 component. In the subsequent leaching process, the Ni2Al3 component shows high activity and the resultant catalyst exhibits high surface areas and small pores. Moreover, metallic Al in the hydrogen-pretreated alloy appeared to be leached more easily and thus the aluminium species remaining on the catalyst surface is aluminium oxide predominantly, which serves as a matrix to stabilize active Ni species on the surface. Copyright (C) 2001 John Wiley & Sons, Ltd.
Resumo:
We report a comprehensive study of the binary systems of the platinum-group metals with the transition metals, using high-throughput first-principles calculations. These computations predict stability of new compounds in 28 binary systems where no compounds have been reported in the literature experimentally and a few dozen of as-yet unreported compounds in additional systems. Our calculations also identify stable structures at compound compositions that have been previously reported without detailed structural data and indicate that some experimentally reported compounds may actually be unstable at low temperatures. With these results, we construct enhanced structure maps for the binary alloys of platinum-group metals. These maps are much more complete, systematic, and predictive than those based on empirical results alone.
Resumo:
Removing zinc by distillation can leave the lead bullion virtually free of zinc and also produces pure zinc crystals. Batch distillation is considered in a hemispherical kettle with water-cooled lid, under high vacuum (50 Pa or less). Sufficient zinc concentration at the evaporating surface is achieved by means of a mechanical stirrer. The numerical model is based on the multiphysics simulation package PHYSICA. The fluid flow module of the code is used to simulate the action of the stirring impeller and to determine the temperature and concentration fields throughout the liquid volume including the evaporating surface. The rate of zinc evaporation and condensation is then modelled using Langmuir’s equations. Diffusion of the zinc vapour through the residual air in the vacuum gap is also taken into account. Computed results show that the mixing is sufficient and the rate-limiting step of the process is the surface evaporation driven by the difference of the equilibrium vapour pressure and the actual partial pressure of zinc vapour. However, at higher zinc concentrations, the heat transfer through the growing zinc crystal crust towards the cold steel lid may become the limiting factor because the crystallization front may reach the melting point. The computational model can be very useful in optimising the process within its safe limits.
Resumo:
Copper (Cu) has been widely used in the under bump metallurgy of chip and substrate metallization for chip packaging. However, due to the rapid formation of Cu–Sn intermetallic compound (IMC) at the tin-based solder/Cu interface during solder reaction, the reliability of this type of solder joint is a serious concern. In this work, electroless nickel–phosphorous (Ni–P) layer was deposited on the Cu pad of the flexible substrate as a diffusion barrier between Cu and the solder materials. The deposition was carried out in a commercial acidic sodium hypophosphite bath at 85 °C for different pH values. It was found that for the same deposition time period, higher pH bath composition (mild acidic) yields thicker Ni–P layer with lower phosphorous content. Solder balls having composition 62%Sn–36%Pb–2%Ag were reflowed at 240 °C for 1 to 180 min on three types of electroless Ni–P layers deposited at the pH value of 4, 4.8 and 6, respectively. Thermal stability of the electroless Ni–P barrier layer against the Sn–36%Pb–2%Ag solder reflowed for different time periods was examined by scanning electron microscopy equipped with energy dispersed X-ray. Solder ball shear test was performed in order to find out the relationship between the mechanical strength of solder joints and the characteristics of the electroless Ni–P layer deposited. The layer deposited in the pH 4 acidic bath showed the weak barrier against reflow soldering whereas layer deposited in pH 6 acidic bath showed better barrier against reflow soldering. Mechanical strength of the joints were deteriorated quickly in the layer deposited at pH 4 acidic bath, which was found to be thin and has a high phosphorous content. From the cross-sectional studies and fracture surface analyses, it was found that the appearance of the dark crystalline phosphorous-rich Ni layer weakened the interface and hence lower solder ball shear strength. Ni–Sn IMC formed at the interfaces was found to be more stable at the low phosphorous content (∼14 at.%) layer. Electroless Ni–P deposited at mild acidic bath resulting phosphorous content of around 14 at.% is suggested as the best barrier layer for Sn–36%Pb–2%Ag solder.
Resumo:
Thermoelectric currents in the presence of a magnetic field generate Lorentz forces which can drive fluid flow. In the case of dendritic growth a naturally occurring thermoelectric current exists and in the presence of a high magnetic field micro convections are generated. Experimental evidence has attributed changes in microstructure to this effect. A numerical model has been developed to study the flow field around an unconstricted equiaxed dendrite growing under these conditions. The growth is modeled in 2D and 3D by an enthalpy based method and a complex flow structure has been predicted. Using a pseudo-3D approximation for economy, realistic 2D simulations are obtained where a fully coupled transient scheme reveals significant changes to the dendrite morphology reflecting experimental evidence. There is a rotation of the preferred direction of growth and increased secondary branching.
Resumo:
The semiconductor alloy indium gallium nitride (InxGa1-xN) offers substantial potential in the development of high-efficiency multi-junction photovoltaic devices due to its wide range of direct band gaps, strong absorption and other optoelectronic properties. This work uses a variety of characterization techniques to examine the properties of InxGa1-xN thin films deposited in a range of compositions by a novel plasma-enhanced evaporation deposition system. Due to the high vapour pressure and low dissociation temperature of indium, the indium incorporation and, ultimately, control of the InxGa1-xN composition was found to be influenced to a greater degree by deposition temperature than variations in the In:Ga source rates in the investigated region of deposition condition space. Under specific deposition conditions, crystalline films were grown in an advantageous nano-columnar microstructure with deposition temperature influencing column size and density. The InxGa1-xN films were determined to have very strong absorption coefficients with band gaps indirectly related to indium content. However, the films also suffer from compositional inhomogeneity and In-related defect complexes with strong phonon coupling that dominates the emission mechanism. This, in addition to the presence of metal impurities, harms the alloy’s electronic properties as no significant photoresponse was observed. This research has demonstrated the material properties that make the InxGa1-xN alloy attractive for multi-junction solar cells and the benefits/drawbacks of the plasma-enhanced evaporation deposition system. Future work is needed to overcome significant challenges relating to crystalline quality, compositional homogeneity and the optoelectronic properties of In-rich InxGa1-xN films in order to develop high-performance photovoltaic devices.
Resumo:
An artificial neural network (ANN) model is developed for the analysis and simulation of the correlation between the properties of maraging steels and composition, processing and working conditions. The input parameters of the model consist of alloy composition, processing parameters (including cold deformation degree, ageing temperature, and ageing time), and working temperature. The outputs of the ANN model include property parameters namely: ultimate tensile strength, yield strength, elongation, reduction in area, hardness, notched tensile strength, Charpy impact energy, fracture toughness, and martensitic transformation start temperature. Good performance of the ANN model is achieved. The model can be used to calculate properties of maraging steels as functions of alloy composition, processing parameters, and working condition. The combined influence of Co and Mo on the properties of maraging steels is simulated using the model. The results are in agreement with experimental data. Explanation of the calculated results from the metallurgical point of view is attempted. The model can be used as a guide for further alloy development.
Resumo:
Nitride-strengthened, reduced activation, martensitic steel is anticipated to have higher creep strength because of the remarkable thermal stability of nitrides. Two nitride-strengthened, reduced activation martensitic steels with different carbon contents were prepared to investigate the microstructure and mechanical property changes with decreasing carbon content. It has been found that both steels had the microstructure of full martensite with fine nitrides dispersed homogeneously in the matrix and displayed extremely high strength but poor toughness. Compared with the steel with low carbon content (0.005 pct in wt pct), the steel with high carbon content (0.012 pct in wt pct) had not only the higher strength but also the higher impact toughness and grain coarsening temperature, which was related to the carbon content. On the one hand, carbon reduction led to Ta-rich inclusions; on the other hand, the grain grew larger when normalized at high temperature because of the absence of Ta carbonitrides, which would decrease impact toughness. The complicated Al2O3 inclusions in the two steels have been revealed to be responsible for the initiated cleavage fracture by acting as the critical cracks.
Resumo:
A hierarchical nanoparticle strategy to simultaneously gain super Raman signal amplification, high uniformity, and reproducibility is presented. Using hollow Au-Ag alloy nanourchins, an ultrahigh sensitivity, e.g., down to 1 fM concentrations for DEHP molecule is obtained. A small standard deviation of <10% is achieved by simply dropping and evaporating sub-100 nm nanourchins onto a substrate.
Resumo:
6061 O Al alloy foils were welded to form monolithic and SiC fibre-embedded samples using the ultrasonic consolidation (UC) process. Contact pressures of 135, 155 and 175 MPa were investigated at 20 kHz frequency, 50% of the oscillation amplitude, 34.5 mm s sonotrode velocity and 20 °C. Deformed microstructures were analysed using electron backscatter diffraction (EBSD). At all contact pressures deformation occurs by non-steady state dislocation glide. Dynamic recovery is active in the upper and lower foils. Friction at the welding interface, instantaneous internal temperatures (0.5-0.8 of the melting temperature, T), contact pressure and fast strain rates result in transient microstructures and grain size reduction by continuous dynamic recrystallization (CDRX) within the bonding zone. Bonding occurs by local grain boundary migration, which allows diffusion and atom interlocking across the contact between two clean surfaces. Textures weaken with increasing contact pressure due to increased strain hardening and different grain rotation rates. High contact pressures enhance dynamic recovery and CDRX. Deformation around the fibre is intense within 50 μm and extends to 450 μm from it. © 2009 Acta Materialia Inc.
Resumo:
Ultrasonic welding process can be used for bonding metal foils which is the fundament of ultrasonic consolidation (UC). UC process can be used to embed reinforcement fibres such as SiC fibres within an aluminum matrix materials. In this research we are investigating the phenomena occurring in the microstructure of the parts during ultrasonic welding process to obtain better understanding about how and why the process works. High-resolution electron backscatter diffraction (EBSD) is used to study the effects of the vibration on the evolution of microstructure in AA3003. The inverse pole figures (IPF) and the correlated misorientation angle distribution of the mentioned samples are obtained. The characteristics of the crystallographic orientation, the grain structure and the grain boundary are analyzed to find the effect of ultrasonic vibration on the microstructure and microtexture of the bond. The ultrasonic vibration will lead to exceptional refinement of grains to a micron level along the bond area and affect the crystallographic orientation. Ultrasonic vibration results in a very weak texture. Plastic flow occurs in the grain after welding process and there is additional plastic flow around the fibre which leads to the fibre embedding. © 2009 Editorial Board of CHINA WELDING.
Resumo:
The plain fatigue and fretting fatigue tests of Ti-1023 titanium alloy were performed using a high-frequency push-pull fatigue testing machine. Both σmax versus number of cycles to failure curves were obtained for comparative analysis of the fretting effect on fatigue performance of the titanium alloy. Meanwhile, by analyzing the fracture of plain fatigue and fretting fatigue, the fretting scar and the fretting debris observed by scanning electron microscopy (SEM), the mechanism of fretting fatigue failure of Ti-1023 titanium alloy is discussed. The fretting fatigue strength of Ti-1023 titanium alloy is 175 MPa under 10 MPa contact pressure, which is 21% of plain fatigue strength (836 MPa). Under fretting condition, the Ti-1023 titanium alloy fatigue fracture failure occurs in a shorter fatigue life. When it comes to σmax versus number of cycles to failure curves, data points in the range of 106–107 cycles under plain fatigue condition moved to the range of 105–106 under fretting fatigue condition. The integrity of the fatigue specimen surface was seriously damaged under the effect of fretting. With the alternating stress loaded on specimen, the stress concentrated on the surface of fretting area, which brought earlier the initiation and propagation of crack.
Resumo:
With a significant growth in the use of titanium alloys in the aviation manufacturing industry, the key challenge of making high-quality holes in the aircraft assembly process needs to be addressed. In this work, case studies deploying traditional drilling and helical milling technologies are carried out to investigate the tool life and hole surface integrity for hole-making of titanium alloy. Results show that the helical milling process leads to much longer tool life, generally lower hole surface roughness, and higher hole subsurface microhardness. In addition, no plastically deformed layer or white layer has been observed in holes produced by helical milling. In contrast, a slightly softened region was always present on the drilled surface. The residual stress distributions within the hole surface, including compressive and tensile residual stress, have also been investigated in detail.