756 resultados para Grid-based clustering approach


Relevância:

100.00% 100.00%

Publicador:

Resumo:

PURPOSE: Two common approaches to identify subgroups of patients with bipolar disorder are clustering methodology (mixture analysis) based on the age of onset, and a birth cohort analysis. This study investigates if a birth cohort effect will influence the results of clustering on the age of onset, using a large, international database. METHODS: The database includes 4037 patients with a diagnosis of bipolar I disorder, previously collected at 36 collection sites in 23 countries. Generalized estimating equations (GEE) were used to adjust the data for country median age, and in some models, birth cohort. Model-based clustering (mixture analysis) was then performed on the age of onset data using the residuals. Clinical variables in subgroups were compared. RESULTS: There was a strong birth cohort effect. Without adjusting for the birth cohort, three subgroups were found by clustering. After adjusting for the birth cohort or when considering only those born after 1959, two subgroups were found. With results of either two or three subgroups, the youngest subgroup was more likely to have a family history of mood disorders and a first episode with depressed polarity. However, without adjusting for birth cohort (three subgroups), family history and polarity of the first episode could not be distinguished between the middle and oldest subgroups. CONCLUSION: These results using international data confirm prior findings using single country data, that there are subgroups of bipolar I disorder based on the age of onset, and that there is a birth cohort effect. Including the birth cohort adjustment altered the number and characteristics of subgroups detected when clustering by age of onset. Further investigation is needed to determine if combining both approaches will identify subgroups that are more useful for research.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The paper gives an overview about the ongoing FP6-IST INFRAWEBS project and describes the main layers and software components embedded in an application oriented realisation framework. An important part of INFRAWEBS is a Semantic Web Unit (SWU) – a collaboration platform and interoperable middleware for ontology-based handling and maintaining of SWS. The framework provides knowledge about a specific domain and relies on ontologies to structure and exchange this knowledge to semantic service development modules. INFRAWEBS Designer and Composer are sub-modules of SWU responsible for creating Semantic Web Services using Case-Based Reasoning approach. The Service Access Middleware (SAM) is responsible for building up the communication channels between users and various other modules. It serves as a generic middleware for deployment of Semantic Web Services. This software toolset provides a development framework for creating and maintaining the full-life-cycle of Semantic Web Services with specific application support.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Location estimation is important for wireless sensor network (WSN) applications. In this paper we propose a Cramer-Rao Bound (CRB) based analytical approach for two centralized multi-hop localization algorithms to get insights into the error performance and its sensitivity to the distance measurement error, anchor node density and placement. The location estimation performance is compared with four distributed multi-hop localization algorithms by simulation to evaluate the efficiency of the proposed analytical approach. The numerical results demonstrate the complex tradeoff between the centralized and distributed localization algorithms on accuracy, complexity and communication overhead. Based on this analysis, an efficient and scalable performance evaluation tool can be designed for localization algorithms in large scale WSNs, where simulation-based evaluation approaches are impractical. © 2013 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Volunteered Service Composition (VSC) refers to the process of composing volunteered services and resources. These services are typically published to a pool of voluntary resources. The composition aims at satisfying some objectives (e.g. Utilizing storage and eliminating waste, sharing space and optimizing for energy, reducing computational cost etc.). In cases when a single volunteered service does not satisfy a request, VSC will be required. In this paper, we contribute to three approaches for composing volunteered services: these are exhaustive, naïve and utility-based search approach to VSC. The proposed new utility-based approach, for instance, is based on measuring the utility that each volunteered service can provide to each request and systematically selects the one with the highest utility. We found that the utility-based approach tend to be more effective and efficient when selecting services, while minimizing resource waste when compared to the other two approaches.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

2002 Mathematics Subject Classification: 65C05.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: 62J05, 62J10, 62F35, 62H12, 62P30.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: C2P99.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Heterogeneous datasets arise naturally in most applications due to the use of a variety of sensors and measuring platforms. Such datasets can be heterogeneous in terms of the error characteristics and sensor models. Treating such data is most naturally accomplished using a Bayesian or model-based geostatistical approach; however, such methods generally scale rather badly with the size of dataset, and require computationally expensive Monte Carlo based inference. Recently within the machine learning and spatial statistics communities many papers have explored the potential of reduced rank representations of the covariance matrix, often referred to as projected or fixed rank approaches. In such methods the covariance function of the posterior process is represented by a reduced rank approximation which is chosen such that there is minimal information loss. In this paper a sequential Bayesian framework for inference in such projected processes is presented. The observations are considered one at a time which avoids the need for high dimensional integrals typically required in a Bayesian approach. A C++ library, gptk, which is part of the INTAMAP web service, is introduced which implements projected, sequential estimation and adds several novel features. In particular the library includes the ability to use a generic observation operator, or sensor model, to permit data fusion. It is also possible to cope with a range of observation error characteristics, including non-Gaussian observation errors. Inference for the covariance parameters is explored, including the impact of the projected process approximation on likelihood profiles. We illustrate the projected sequential method in application to synthetic and real datasets. Limitations and extensions are discussed. © 2010 Elsevier Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Government policy and national practice guidelines have created an increasing need for autism services to adopt an evidence-based practice approach. However, a gap continues to exist between research evidence and its application. This study investigated the difference between autism researchers and practitioners in their methods of acquiring knowledge. Methods: In a questionnaire study, 261 practitioners and 422 researchers reported on the methods they use and perceive to be beneficial for increasing research access and knowledge. They also reported on their level of engagement with members of the other professional community. Results: Researchers and practitioners reported different methods used to access information. Each group, however, had similar overall priorities regarding access to research information. While researchers endorsed the use of academic journals significantly more often than practitioners, both groups included academic journals in their top three choices. The groups differed in the levels of engagement they reported; researchers indicated they were more engaged with practitioners than vice versa. Conclusions: Comparison of researcher and practitioner preferences led to several recommendations to improve knowledge sharing and translation, including enhancing access to original research publications, facilitating informal networking opportunities and the development of proposals for the inclusion of practitioners throughout the research process.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Segmentation is an important step in many medical imaging applications and a variety of image segmentation techniques exist. One group of segmentation algorithms is based on clustering concepts. In this article we investigate several fuzzy c-means based clustering algorithms and their application to medical image segmentation. In particular we evaluate the conventional hard c-means (HCM) and fuzzy c-means (FCM) approaches as well as three computationally more efficient derivatives of fuzzy c-means: fast FCM with random sampling, fast generalised FCM, and a new anisotropic mean shift based FCM. © 2010 by IJTS, ISDER.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Catastrophic failure from intentional terrorist attacks on surface transportation infrastructure could he detrimental to the society. In order to minimize the vulnerabilities and to ensure a safe transportation system, the issue of security for transportation structures, primarily bridges, which are subjected to man-made hazards is investigated in this study. A procedure for identifying and prioritizing "critical bridges" using a screening and prioritization processes is established. For each of the "critical" bridges, a systematic risk-based assessment approach is proposed that takes into account the combination of threat occurrence likelihood, its consequences, and the socioeconomic importance of the bridge. A series of effective security countermeasures are compiled in the four categories of deterrence, detection, defense and mitigation to help reduce the vulnerability of critical bridges. The concepts of simplified equivalent I-shape cross section and virtual materials are proposed for integration into a nonlinear finite element model, which helps assess the performance of reinforced concrete structures with and without composite retrofit or hardening measures under blast loading. A series of parametric studies are conducted for single column and two-column pier frame systems as well as for an entire bridge. The parameters considered include column height, column type, concrete strength, longitudinal steel reinforcement ratio, thickness, fiber angle and tensile strength of the fiber reinforced polymer (FRP) tube, shape of the cross section, damping ratio and different bomb sizes. The study shows the benefits of hardening with composites against blast loading. The effect of steel reinforcement on blast resistance of the structure is more significant than the effect of concrete compressive strength. Moreover, multiple blasts do not necessarily lead to a more severe destruction than a single detonation at a strategically vulnerable location on the bridges.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

With the advantages and popularity of Permanent Magnet (PM) motors due to their high power density, there is an increasing incentive to use them in variety of applications including electric actuation. These applications have strict noise emission standards. The generation of audible noise and associated vibration modes are characteristics of all electric motors, it is especially problematic in low speed sensorless control rotary actuation applications using high frequency voltage injection technique. This dissertation is aimed at solving the problem of optimizing the sensorless control algorithm for low noise and vibration while achieving at least 12 bit absolute accuracy for speed and position control. The low speed sensorless algorithm is simulated using an improved Phase Variable Model, developed and implemented in a hardware-in-the-loop prototyping environment. Two experimental testbeds were developed and built to test and verify the algorithm in real time.^ A neural network based modeling approach was used to predict the audible noise due to the high frequency injected carrier signal. This model was created based on noise measurements in an especially built chamber. The developed noise model is then integrated into the high frequency based sensorless control scheme so that appropriate tradeoffs and mitigation techniques can be devised. This will improve the position estimation and control performance while keeping the noise below a certain level. Genetic algorithms were used for including the noise optimization parameters into the developed control algorithm.^ A novel wavelet based filtering approach was proposed in this dissertation for the sensorless control algorithm at low speed. This novel filter was capable of extracting the position information at low values of injection voltage where conventional filters fail. This filtering approach can be used in practice to reduce the injected voltage in sensorless control algorithm resulting in significant reduction of noise and vibration.^ Online optimization of sensorless position estimation algorithm was performed to reduce vibration and to improve the position estimation performance. The results obtained are important and represent original contributions that can be helpful in choosing optimal parameters for sensorless control algorithm in many practical applications.^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Due to the rapid advances in computing and sensing technologies, enormous amounts of data are being generated everyday in various applications. The integration of data mining and data visualization has been widely used to analyze these massive and complex data sets to discover hidden patterns. For both data mining and visualization to be effective, it is important to include the visualization techniques in the mining process and to generate the discovered patterns for a more comprehensive visual view. In this dissertation, four related problems: dimensionality reduction for visualizing high dimensional datasets, visualization-based clustering evaluation, interactive document mining, and multiple clusterings exploration are studied to explore the integration of data mining and data visualization. In particular, we 1) propose an efficient feature selection method (reliefF + mRMR) for preprocessing high dimensional datasets; 2) present DClusterE to integrate cluster validation with user interaction and provide rich visualization tools for users to examine document clustering results from multiple perspectives; 3) design two interactive document summarization systems to involve users efforts and generate customized summaries from 2D sentence layouts; and 4) propose a new framework which organizes the different input clusterings into a hierarchical tree structure and allows for interactive exploration of multiple clustering solutions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Everglades freshwater marl prairie is a dynamic and spatially heterogeneous landscape, containing thousands of tree islands nested within a marsh matrix. Spatial processes underlie population and community dynamics across the mosaic, especially the balance between woody and graminoid components, and landscape patterns reflect interactions among multiple biotic and abiotic drivers. To better understand these complex, multi-scaled relationships we employed a three-tiered hierarchical design to investigate the effects of seed source, hydrology, and more indirectly fire on the establishment of new woody recruits in the marsh, and to assess current tree island patterning across the landscape. Our analyses were conducted at the ground level at two scales, which we term the micro- and meso-scapes, and results were related to remotely detected tree island distributions assessed in the broader landscape, that is, the macro-scape. Seed source and hydrologic effects on recruitment in the micro- and meso-scapes were analyzed via logistic regression, and spatial aggregation in the macro-scape was evaluated using a grid-based univariate O-ring function. Results varied among regions and scales but several general trends were observed. The patterning of adult populations was the strongest driver of recruitment in the micro- and meso-scape prairies, with recruits frequently aggregating around adults or tree islands. However in the macro-scape biologically associated (second order) aggregation was rare, suggesting that emergent woody patches are heavily controlled by underlying physical and environmental factors such as topography, hydrology, and fire.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Traditional methods of financing infrastructure, which include gas taxation, tax-exempt bonds, and reserve funds, have not been able to meet the growing demand for infrastructure. Innovative financing systems have emerged to close the gap that exists between the available and needed financing sources. The objective of the study presented in this paper is to assess determinants of innovative financing in the U.S. transportation infrastructure using a systemic approach. Innovation System of Systems approach is adopted for systemic assessment and a case-based research approach is utilized to explore the constituents of innovative financing for U.S. transportation infrastructure. The findings, which include constructs regarding the players, practices, and activities are used to create a model to enable understanding the dynamics of the drivers and inhibitors of innovation and, thus, to derive implications for practice. The model along with the constructs provides an analytical tool for practitioners in the U.S. transportation infrastructure.