962 resultados para Genome wide mapping
Resumo:
Copy number variation (CNV) is a key source of genetic diversity, but a comprehensive understanding of its phenotypic effect is only beginning to emerge. We have generated a CNV map in wild mice and classical inbred strains. Genome-wide expression data from six major organs show not only that expression of genes within CNVs tend to correlate with copy number changes, but also that CNVs influence the expression of genes in their vicinity, an effect that extends up to half a megabase. Genes within CNVs show lower expression and more specific spatial expression patterns than genes mapping elsewhere. Our analyses reveal differential constraint on copy number changes of genes expressed in different tissues. Dosage alterations of brain-expressed genes are less frequent than those of other genes and are buffered by tighter transcriptional regulation. Our study provides initial evidence that CNVs shape tissue transcriptomes on a global scale.
Resumo:
Understanding the genetic structure of human populations is of fundamental interest to medical, forensic and anthropological sciences. Advances in high-throughput genotyping technology have markedly improved our understanding of global patterns of human genetic variation and suggest the potential to use large samples to uncover variation among closely spaced populations. Here we characterize genetic variation in a sample of 3,000 European individuals genotyped at over half a million variable DNA sites in the human genome. Despite low average levels of genetic differentiation among Europeans, we find a close correspondence between genetic and geographic distances; indeed, a geographical map of Europe arises naturally as an efficient two-dimensional summary of genetic variation in Europeans. The results emphasize that when mapping the genetic basis of a disease phenotype, spurious associations can arise if genetic structure is not properly accounted for. In addition, the results are relevant to the prospects of genetic ancestry testing; an individual's DNA can be used to infer their geographic origin with surprising accuracy-often to within a few hundred kilometres.
Resumo:
CONTEXT: Many inherited disorders of calcium and phosphate homeostasis are unexplained at the molecular level. OBJECTIVE: The objective of the study was to identify the molecular basis of phosphate and calcium abnormalities in two unrelated, consanguineous families. PATIENTS: The affected members in family 1 presented with rickets due to profound urinary phosphate-wasting and hypophosphatemic rickets. In the previously reported family 2, patients presented with proximal renal tubulopathy and hypercalciuria yet normal or only mildly increased urinary phosphate excretion. METHODS: Genome-wide linkage scans and direct nucleotide sequence analyses of candidate genes were performed. Transport of glucose and phosphate by glucose transporter 2 (GLUT2) was assessed using Xenopus oocytes. Renal sodium-phosphate cotransporter 2a and 2c (Npt2a and Npt2c) expressions were evaluated in transgenically rescued Glut2-null mice (tgGlut2-/-). RESULTS: In both families, genetic mapping and sequence analysis of candidate genes led to the identification of two novel homozygous mutations (IVS4-2A>G and R124S, respectively) in GLUT2, the gene mutated in Fanconi-Bickel syndrome, a rare disease usually characterized by renal tubulopathy, impaired glucose homeostasis, and hepatomegaly. Xenopus oocytes expressing the [R124S]GLUT2 mutant showed a significant reduction in glucose transport, but neither wild-type nor mutant GLUT2 facilitated phosphate import or export; tgGlut2-/- mice demonstrated a profound reduction of Npt2c expression in the proximal renal tubules. CONCLUSIONS: Homozygous mutations in the facilitative glucose transporter GLUT2, which cause Fanconi-Bickel syndrome, can lead to very different clinical and biochemical findings that are not limited to mild proximal renal tubulopathy but can include significant hypercalciuria and highly variable degrees of urinary phosphate-wasting and hypophosphatemia, possibly because of the impaired proximal tubular expression of Npt2c.
Resumo:
Sleep disorders commonly involve genetic susceptibility, environmental effects, and interactions between these factors. The heritability of sleep patterns has been shown in studies of monozygotic twins, and sleep electroencephalogram patterns offer a unique genetic fingerprint which may assist in the identification of genes involved in the regulation of sleep. Genetic factors are also thought to play a role in sleep disorders; narcolepsy is a disabling sleep condition and research has revealed the complexity of underlying genetic and environmental influences in the development of this disorder. An understanding of sleep regulation at the molecular level is essential in the identification of new targets for the treatment of sleep disorders, and genome-wide association studies for both normal sleep and sleep disorders may shed new light on the molecular architecture of mechanisms regulating these behaviours.
Resumo:
BACKGROUND: The only known albino gorilla, named Snowflake, was a male wild born individual from Equatorial Guinea who lived at the Barcelona Zoo for almost 40 years. He was diagnosed with non-syndromic oculocutaneous albinism, i.e. white hair, light eyes, pink skin, photophobia and reduced visual acuity. Despite previous efforts to explain the genetic cause, this is still unknown. Here, we study the genetic cause of his albinism and making use of whole genome sequencing data we find a higher inbreeding coefficient compared to other gorillas.RESULTS: We successfully identified the causal genetic variant for Snowflake's albinism, a non-synonymous single nucleotide variant located in a transmembrane region of SLC45A2. This transporter is known to be involved in oculocutaneous albinism type 4 (OCA4) in humans. We provide experimental evidence that shows that this amino acid replacement alters the membrane spanning capability of this transmembrane region. Finally, we provide a comprehensive study of genome-wide patterns of autozygogosity revealing that Snowflake's parents were related, being this the first report of inbreeding in a wild born Western lowland gorilla.CONCLUSIONS: In this study we demonstrate how the use of whole genome sequencing can be extended to link genotype and phenotype in non-model organisms and it can be a powerful tool in conservation genetics (e.g., inbreeding and genetic diversity) with the expected decrease in sequencing cost.
Resumo:
Hypertension is one of the most common complex genetic disorders. We have described previously 38 single nucleotide polymorphisms (SNPs) with suggestive association with hypertension in Japanese individuals. In this study we extend our previous findings by analyzing a large sample of Japanese individuals (n=14 105) for the most associated SNPs. We also conducted replication analyses in Japanese of susceptibility loci for hypertension identified recently from genome-wide association studies of European ancestries. Association analysis revealed significant association of the ATP2B1 rs2070759 polymorphism with hypertension (P=5.3×10(-5); allelic odds ratio: 1.17 [95% CI: 1.09 to 1.26]). Additional SNPs in ATP2B1 were subsequently genotyped, and the most significant association was with rs11105378 (odds ratio: 1.31 [95% CI: 1.21 to 1.42]; P=4.1×10(-11)). Association of rs11105378 with hypertension was cross-validated by replication analysis with the Global Blood Pressure Genetics consortium data set (odds ratio: 1.13 [95% CI: 1.05 to 1.21]; P=5.9×10(-4)). Mean adjusted systolic blood pressure was highly significantly associated with the same SNP in a meta-analysis with individuals of European descent (P=1.4×10(-18)). ATP2B1 mRNA expression levels in umbilical artery smooth muscle cells were found to be significantly different among rs11105378 genotypes. Seven SNPs discovered in published genome-wide association studies were also genotyped in the Japanese population. In the combined analysis with replicated 3 genes, FGF5 rs1458038, CYP17A1, rs1004467, and CSK rs1378942, odds ratio of the highest risk group was 2.27 (95% CI: 1.65 to 3.12; P=4.6×10(-7)) compared with the lower risk group. In summary, this study confirmed common genetic variation in ATP2B1, as well as FGF5, CYP17A1, and CSK, to be associated with blood pressure levels and risk of hypertension.
Resumo:
HIV-1 sequence diversity is affected by selection pressures arising from host genomic factors. Using paired human and viral data from 1071 individuals, we ran >3000 genome-wide scans, testing for associations between host DNA polymorphisms, HIV-1 sequence variation and plasma viral load (VL), while considering human and viral population structure. We observed significant human SNP associations to a total of 48 HIV-1 amino acid variants (p<2.4 × 10(-12)). All associated SNPs mapped to the HLA class I region. Clinical relevance of host and pathogen variation was assessed using VL results. We identified two critical advantages to the use of viral variation for identifying host factors: (1) association signals are much stronger for HIV-1 sequence variants than VL, reflecting the 'intermediate phenotype' nature of viral variation; (2) association testing can be run without any clinical data. The proposed genome-to-genome approach highlights sites of genomic conflict and is a strategy generally applicable to studies of host-pathogen interaction. DOI:http://dx.doi.org/10.7554/eLife.01123.001.
Resumo:
The human genome encodes the blueprint of life, but the function of the vast majority of its nearly three billion bases is unknown. The Encyclopedia of DNA Elements (ENCODE) project has systematically mapped regions of transcription, transcription factor association, chromatin structure and histone modification. These data enabled us to assign biochemical functions for 80% of the genome, in particular outside of the well-studied protein-coding regions. Many discovered candidate regulatory elements are physically associated with one another and with expressed genes, providing new insights into the mechanisms of gene regulation. The newly identified elements also show a statistical correspondence to sequence variants linked to human disease, and can thereby guide interpretation of this variation. Overall, the project provides new insights into the organization and regulation of our genes and genome, and is an expansive resource of functional annotations for biomedical research.
Resumo:
Motivation: Genome-wide association studies have become widely used tools to study effects of genetic variants on complex diseases. While it is of great interest to extend existing analysis methods by considering interaction effects between pairs of loci, the large number of possible tests presents a significant computational challenge. The number of computations is further multiplied in the study of gene expression quantitative trait mapping, in which tests are performed for thousands of gene phenotypes simultaneously. Results: We present FastEpistasis, an efficient parallel solution extending the PLINK epistasis module, designed to test for epistasis effects when analyzing continuous phenotypes. Our results show that the algorithm scales with the number of processors and offers a reduction in computation time when several phenotypes are analyzed simultaneously. FastEpistasis is capable of testing the association of a continuous trait with all single nucleotide polymorphism ( SNP) pairs from 500 000 SNPs, totaling 125 billion tests, in a population of 5000 individuals in 29, 4 or 0.5 days using 8, 64 or 512 processors.
Resumo:
In vitro and in vivo analyses identified a significant component of heritability in cellular or host susceptibility to HIV-1. The bases for susceptibility can be traced to genetic differences (inter-species) resulting from evolutionary adaptation to exogenous (and endogenous) retroviral infections, and to intra-species and inter-individual (human) differences associated with genetic variation. We have completed large scale evolutionary analysis of genes involved in HIV life cycle and pathogenesis, as well as participating and conducting genome-wide association studies, linkage analysis, and transcriptome analysis. These studies allowed a better understanding of the influence of common human variants in HIV-1 susceptibility and define a number of experimental challenges in the filed: understanding of the role of rare and private mutations in susceptibility, and the development of better tools for the integration of data from large-scale studies.
Resumo:
OBJECTIVE: To report a novel phenotype of autosomal dominant atypical congenital cataract associated with variable expression of microcornea, microphthalmia, and iris coloboma linked to chromosome 2. Molecular analysis of this phenotype may improve our understanding of anterior segment development. DESIGN: Observational case study, genome linkage analysis, and gene mutation screening. PARTICIPANTS: Three families, 1 Egyptian and 2 Belgians, with a total of 31 affected were studied. METHODS: Twenty-one affected subjects and 9 first-degree relatives underwent complete ophthalmic examination. In the Egyptian family, exclusion of PAX6, CRYAA, and MAF genes was demonstrated by haplotype analysis using microsatellite markers on chromosomes 11, 16, and 21. Genome-wide linkage analysis was then performed using 385 microsatellite markers on this family. In the 2 Belgian families, the PAX6 gene was screened for mutations by direct sequencing of all exons. MAIN OUTCOME MEASURES: Phenotype description, genome-wide linkage of the phenotype, linkage to the PAX6, CRYAA, and MAF genes, and mutation detection in the PAX6 gene. RESULTS: Affected members of the 3 families had bilateral congenital cataracts inherited in an autosomal dominant pattern. A novel form of hexagonal nuclear cataract with cortical riders was expressed. Among affected subjects with available data, 95% had microcornea, 39% had microphthalmia, and 38% had iris coloboma. Seventy-five percent of the colobomata were atypical, showing a nasal superior location in 56%. A positive lod score of 4.86 was obtained at theta = 0 for D2S2309 on chromosome 2, a 4.9-Mb common haplotype flanked by D2S2309 and D2S2358 was obtained in the Egyptian family, and linkage to the PAX6, CRYAA, or MAF gene was excluded. In the 2 Belgian families, sequencing of the junctions and all coding exons of PAX6 did not reveal any molecular change. CONCLUSIONS: We describe a novel phenotype that includes the combination of a novel form of congenital hexagonal cataract, with variably expressed microcornea, microphthalmia, and atypical iris coloboma, not caused by PAX6 and mapping to chromosome 2. FINANCIAL DISCLOSURE(S): The authors have no proprietary or commercial interest in any materials discussed in this article.
Resumo:
Structural variation, whether it is caused by copy number variants or present in a balanced form, such as reciprocal translocations and inversions, can have a profound and dramatic effect on the expression of genes mapping within and close to the rearrangement, as well as affecting others genome wide. These effects can be caused by altering the copy number of one or more genes or regulatory elements (dosage effect) or from physical disruption of links between regulatory elements and their associated gene or genes, resulting in perturbation of expression. Similarly, large-scale structural variants can result in genome-wide expression changes by altering the positions that chromosomes occupy within the nucleus, potentially disrupting not only local cis interactions, but also trans interactions that occur throughout the genome. Structural variation is, therefore, a significant factor in the study of gene expression and is discussed here in more detail.
Resumo:
Copy number variation (CNV) has recently gained considerable interest as a source of genetic variation likely to play a role in phenotypic diversity and evolution. Much effort has been put into the identification and mapping of regions that vary in copy number among seemingly normal individuals in humans and a number of model organisms, using bioinformatics or hybridization-based methods. These have allowed uncovering associations between copy number changes and complex diseases in whole-genome association studies, as well as identify new genomic disorders. At the genome-wide scale, however, the functional impact of CNV remains poorly studied. Here we review the current catalogs of CNVs, their association with diseases and how they link genotype and phenotype. We describe initial evidence which revealed that genes in CNV regions are expressed at lower and more variable levels than genes mapping elsewhere, and also that CNV not only affects the expression of genes varying in copy number, but also have a global influence on the transcriptome. Further studies are warranted for complete cataloguing and fine mapping of CNVs, as well as to elucidate the different mechanisms by which they influence gene expression.
Resumo:
Obesity is globally prevalent and highly heritable, but its underlying genetic factors remain largely elusive. To identify genetic loci for obesity susceptibility, we examined associations between body mass index and ∼ 2.8 million SNPs in up to 123,865 individuals with targeted follow up of 42 SNPs in up to 125,931 additional individuals. We confirmed 14 known obesity susceptibility loci and identified 18 new loci associated with body mass index (P < 5 × 10⁻⁸), one of which includes a copy number variant near GPRC5B. Some loci (at MC4R, POMC, SH2B1 and BDNF) map near key hypothalamic regulators of energy balance, and one of these loci is near GIPR, an incretin receptor. Furthermore, genes in other newly associated loci may provide new insights into human body weight regulation.
Resumo:
RESUME - FRANÇAISRésuméDans ce travail de thèse, l'importance de la pharmacogénétique des traitements antiviraux a été évaluée en déterminant, au moyen de trois différentes approches, l'impact de variations génétiques sur la pharmacocinétique de deux traitements antirétroviraux (à savoir l'efavirenz et le lopinavir) ainsi que sur la capacité de pouvoir éliminer le virus de l'hépatite C de façon naturelle ou suite à un traitement médicamenteux.L'influence des variations génétiques sur les taux plasmatiques de l'efavirenz et de ses métabolites primaires a été évaluée par l'analyse d'un seul gène candidat : le cytochrome P450 (CYP) 2A6, impliqué dans une voie métabolique accessoire de l'efavirenz. Cette étude a permis de démontrer que le génotype du CYP2A6 devient cliniquement déterminant en l'absence de fonction du CYP2B6, impliqué dans la voie métabolique principale, et que la perte simultanée des voies métaboliques principales et accessoires entraine une augmen¬tation du risque d'interruption du traitement, soulignant la valeur prédictive du génotypage.L'influence de la génétique sur la clairance du lopinavir a été évaluée par l'analyse à grande échelle de gènes candidats, à savoir les gènes potentiellement impliqués dans l'absorption, le métabolisme, la distribution et l'élimination d'un médicament. Cette étude a permis l'identification de 4 polymorphismes, dans des transporteurs et des enzymes métaboliques, associés à la clairance du lopinavir et expliquant 5% de la variabilité inter¬individuelle de ce phénotype.L'influence de la génétique sur la capacité d'éliminer le virus de l'hépatite C, de façon naturelle ou à la suite d'un traitement, a été évaluée par l'analyse du génome entier. Cette étude a permis l'identification d'un polymorphisme situé à proximité de l'interféron-X3. Quatre variations génétiques potentiellement causales ont ensuite pu être identifiées par reséquencage. Finalement, la contribution nette de ce gène sur l'élimination du virus a pu être évaluée dans une cohorte infectée par une seule et même source, permettant ainsi de contrôler l'effet de la diversité virale, du genre et de la présence de co-infections.Cette thèse a permis de mettre en évidence les diverses méthodes disponibles pour la recherche en pharmacogénétique, ainsi que l'importance du reséquencage pour l'identification de variations génétiques causales.SUMMARY - ENGLISHSummaryIn this thesis work the relevance of pharmacogenetics of antiviral treatment has been assessed by investigating, through three different approaches, the impact of host genetic variation on antiretroviral drug disposition (namely efavirenz and lopinavir) and on natural or treatment-induced clearance of hepatitis C virus.The influence of host genetic variation on efavirenz and its primary metabolite plasma levels was assessed by single candidate gene approach, through comprehensive analysis of cytochrome P450 (CYP) 2A6 - involved in efavirenz accessory metabolic pathway. The study could demonstrate that CYP2A6 genotype became increasingly relevant in the setting of limited CYP2B6 function - involved in efavirenz main metabolic pathway - and that individuals with both main and accessory metabolic pathways impaired were at higher risk for treatment discontinuation, overall emphasizing the predictive power of genotyping.The influence of host genetic variation on lopinavir clearance was assessed by large scale candidate gene approach, through analysis of genes involved in the absorption, distribution, metabolism and elimination. The study identified four genetic variants in drug transporters and metabolizing enzymes that explained 5% of the interindividual variability in lopinavir clearance.The influence of host genetic variation on hepatitis C virus (HCV) natural or treatment- induced clearance was assessed through genome-wide association study approach. This study identified an intergenic polymorphism, part of a linkage disequilibrium block encompassing the interferon-3 gene, as highly associated with treatment-induced and spontaneous HCV clearance. Resequencing and recombinant mapping lead to the identification of four potentially causal genetic variants. Finally, we could assess the net contribution of genetic variants in interferon-3 to clearance by controlling for viral diversity, gender and co-infection status in a single source infected cohort.This thesis highlights the various genetic tools available to pharmacogenetic discovery (candidate gene, pathway or and genome-wide approaches), and the importance of resequencing for mapping of causal variants.