987 resultados para Generalized cross correlations
Resumo:
This study reports on a sample of normal Australian elderly who were assessed for naming ability using the Boston Naming Test (BNT). The study aimed to examine and compare the changes in naming ability, using both longitudinal and cross-sectional analysis, and determine the relationships between naming ability and age, educational level, visual acuity and gender and cultural relevance. Contradictory findings were produced regarding age and were dependent on the research design. Longitudinal analysis showed no age-related change in naming ability in subjects over a four-period. In contrast, cross-sectional analysis showed a weak but significant correlation between age and naming ability. Educational level, visual acuity and gender were unrelated to changes in naming ability over time, and unrelated to naming ability across the cohort of elderly. The Australian elderly performed better on the modified Australian version of the BNT than on the original American version. Thus, clinicians need to be cautious when interpreting the results of the BNT for elderly and for populations outside North America. The results of this study also indicate a need for further longitudinal research of a greater duration to establish age-related decline in naming ability.
Resumo:
Dual-energy X-ray absorptiometry (DXA) is a widely used method for measuring bone mineral in the growing skeleton. Because scan analysis in children offers a number of challenges, we compared DXA results using six analysis methods at the total proximal femur (PF) and five methods at the femoral neck (FN), In total we assessed 50 scans (25 boys, 25 girls) from two separate studies for cross-sectional differences in bone area, bone mineral content (BMC), and areal bone mineral density (aBMD) and for percentage change over the short term (8 months) and long term (7 years). At the proximal femur for the short-term longitudinal analysis, there was an approximate 3.5% greater change in bone area and BMC when the global region of interest (ROI) was allowed to increase in size between years as compared with when the global ROI was held constant. Trend analysis showed a significant (p < 0.05) difference between scan analysis methods for bone area and BMC across 7 years. At the femoral neck, cross-sectional analysis using a narrower (from default) ROI, without change in location, resulted in a 12.9 and 12.6% smaller bone area and BMC, respectively (both p < 0.001), Changes in FN area and BMC over 8 months were significantly greater (2.3 %, p < 0.05) using a narrower FN rather than the default ROI, Similarly, the 7-year longitudinal data revealed that differences between scan analysis methods were greatest when the narrower FN ROI was maintained across all years (p < 0.001), For aBMD there were no significant differences in group means between analysis methods at either the PF or FN, Our findings show the need to standardize the analysis of proximal femur DXA scans in growing children.
Resumo:
We previously described significant changes in GH-binding protein (GHBP) in pathological human pregnancy. There was a substantial elevation of GHBP in cases of noninsulin-dependent diabetes mellitus and a reduction in insulin-dependent diabetes mellitus. GHBP has the potential to modulate the proportion of free placental GH (PGH) and hence the impact on the maternal GH/insulin-like growth factor I (IGF-I) axis, fetal growth, and maternal glycemic status. The present study was undertaken to investigate the relationship among glycemia, GHBP, and PGH during pregnancy and to assess the impact of GHBP on the concentration of free PGH. We have extended the analysis of specimens to include measurements of GHBP, PGH, IGF-I, IGF-II, IGF-binding protein-1 (IGFBP-1), IGFSP-2, and IGFBP-3 and have related these to maternal characteristics, fetal growth, and glycemia. The simultaneous measurement of GHBP and PGH has for the first time allowed calculation of the free component of PGH and correlation of the free component to indexes of fetal growth and other endocrine markers. PGH, free PGH, IGF-I, and IGF-II were substantially decreased in IUGR at 28-30 weeks gestation (K28) and 36-38 weeks gestation (K36). The mean concentration (+/-SEM) of total PGH increased significantly from K28 to K36 (30.0 +/- 2.2 to 50.7 +/- 6.2 ng/mL; n = 40), as did the concentration of free PGH (23.4 +/- 2.3 to 43.7 +/- 6.0 ng/mL; n = 38). The mean percentage of free PGH was significantly less in IUGR than in normal subjects (67% vs. 79%; P < 0.01). Macrosomia was associated with an increase in these parameters that did not reach statistical significance. Multiple regression analysis revealed that PGH/IGF-I and IGFBP-5 account for 40% of the variance in birth weight. IGFBP-3 showed a significant correlation with IGF-I, IGF-II, and free and total PGK at K28 and K36. Noninsulin-dependent diabetes mellitus patients had a lower mean percentage of free PGH (65%; P < 0.01), and insulin-dependent diabetics had a higher mean percentage of free PGH (87%; P < 0.01) than normal subjects. Mean postprandial glucose at K28 correlated positively with PGH and free PGH (consistent with the hyperglycemic action of GH). GHBP correlated negatively with both postprandial and fasting glucose. Although GHBP correlated negatively with PGH (r = -0.52; P
Resumo:
Our previous studies indicate that oxycodone is a putative kappa-opioid agonist, whereas morphine is a well documented mu-opioid agonist. Because there is limited information regarding the development of tolerance to oxycodone, this study was designed to 1) document the development of tolerance to the antinociceptive effects of chronically infused i.v. oxycodone relative to that for i.v. morphine and 2) quantify the degree of antinociceptive cross-tolerance between morphine and oxycodone in adult male Dark Agouti (DA) rats. Antinociceptive testing was performed using the tail-flick latency test. Complete antinociceptive tolerance was achieved in 48 to 84 h after chronic infusion of equi-antinociceptive doses of i.v. oxycodone (2.5 mg/24 h and 5 mg/24 h) and i.v. morphine (10 mg/24 h and 20 mg/24 h, respectively). Dose-response curves for bolus doses of i.v. and i.c.v. morphine and oxycodone were produced in naive, morphine-tolerant, and oxycodone-tolerant rats. Consistent with our previous findings that oxycodone and morphine produce their intrinsic antinociceptive effects through distinctly different opioid receptor populations, there was no discernible cross-tolerance when i.c.v. oxycodone was given to morphine-tolerant rats. Similarly, only a low degree of cross-tolerance (approximate to 24%) was observed after i.v. oxycodone administration to morphine-tolerant rats. By contrast, both i.v. and i.c.v. morphine showed a high degree of cross-tolerance (approximate to 71% and approximate to 54%, respectively) in rats rendered tolerant to oxycodone. Taken together, these findings suggest that, after parenteral but not supraspinal administration, oxycodone is metabolized to a mu-opioid agonist metabolite, thereby explaining asymmetric and incomplete cross-tolerance between oxycodone and morphine.
Resumo:
Phenylalanine hydroxylase (PAH) is the enzyme that converts phenylalanine to tyrosine as a rate-limiting step in phenylalanine catabolism and protein and neurotransmitter biosynthesis. Over 300 mutations have been identified in the gene encoding PAH that result in a deficient enzyme activity and lead to the disorders hyperphenylalaninaemia and phenylketonuria. The determination of the crystal structure of PAH now allows the determination of the structural basis of mutations resulting in PAH deficiency. We present an analysis of the structural basis of 120 mutations with a 'classified' biochemical phenotype and/or available in vitro expression data. We find that the mutations can be grouped into five structural categories, based on the distinct expected structural and functional effects of the mutations in each category. Missense mutations and small amino acid deletions are found in three categories:'active site mutations', 'dimer interface mutations', and 'domain structure mutations'. Nonsense mutations and splicing mutations form the category of 'proteins with truncations and large deletions'. The final category, 'fusion proteins', is caused by frameshift mutations. We show that the structural information helps formulate some rules that will help predict the likely effects of unclassified and newly discovered mutations: proteins with truncations and large deletions, fusion proteins and active site mutations generally cause severe phenotypes; domain structure mutations and dimer interface mutations spread over a range of phenotypes, but domain structure mutations in the catalytic domain are more likely to be severe than domain structure mutations in the regulatory domain or dimer interface mutations.
Resumo:
Intracavity and external third order correlations in the damped nondegenerate parametric oscillator are calculated for quantum mechanics and stochastic electrodynamics (SED), a semiclassical theory. The two theories yield greatly different results, with the correlations of quantum mechanics being cubic in the system's nonlinear coupling constant and those of SED being linear in the same constant. In particular, differences between the two theories are present in at least a mesoscopic regime. They also exist when realistic damping is included. Such differences illustrate distinctions between quantum mechanics and a hidden variable theory for continuous variables.
Resumo:
We show how the coupling between the phonons and electrons in a strongly correlated metal can result in phonon frequencies that have a nonmonotonic temperature dependence. Dynamical mean-field theory is used to study the Hubbard-Holstein model that describes the kappa-(BEDT-TTF)(2)X [where BEDT-TTF is bis-(ethylenedithia-tetrathiafulvalene)] family of superconducting molecular crystals. The crossover with increasing temperature from a Fermi liquid to a bad metal produces phonon anomalies that are relevant to recent Raman scattering and acoustic experiments.
Neuronal sodium-channel alpha 1-subunit mutations in generalized epilepsy with febrile seizures plus
Resumo:
Generalized epilepsy with febrile seizures plus (GEFS+) is a familial epilepsy syndrome characterized by the presence of febrile and afebrile seizures. The first gene, GEFS1, was mapped to chromosome 19q and was identified as the sodium-channel beta1-subunit, SCN1B. A second locus on chromosome 2q, GEFS2, was recently identified as the sodium-channel alpha1-subunit, SCN1A. Single-stranded conformation analysis (SSCA) of SCN1A was performed in 53 unrelated index cases to estimate the frequency of mutations in patients with GEFS+. No mutations were found in 17 isolated cases of GEFS+. Three novel SCN1A mutations-D188V, V1353L, and I1656M-were found in 36 familial cases; of the remaining 33 families, 3 had mutations in SCN1B. On the basis of SSCA, the combined frequency of SCN1A and SCN1B mutations in familial cases of GEFS+ was found to be 17%.
Resumo:
Recent findings from studies of two families have shown that mutations in the GABA(A)-receptor gamma2 subunit are associated with generalized epilepsies and febrile seizures. Here we describe a family that has generalized epilepsy with febrile seizures plus (GEFS(+)), including an individual with severe myoclonic epilepsy of infancy, in whom a third GABA(A)-receptor gamma2-subunit mutation was found. This mutation lies in the intracellular loop between the third and fourth transmembrane domains of the GABA(A)-receptor gamma2 subunit and introduces a premature stop codon at Q351 in the mature protein. GABA sensitivity in Xenopus laevis oocytes expressing the mutant gamma2(Q351X) subunit is completely abolished, and fluorescent-microscopy studies have shown that receptors containing GFP-labeled gamma2(Q351X) protein are retained in the lumen of the endoplasmic reticulum. This finding reinforces the involvement of GABA(A) receptors in epilepsy.
Resumo:
Generalized epilepsy with febrile seizures plus (GEFS(+)) is an important childhood genetic epilepsy syndrome with heterogeneous phenotypes, including febrile seizures (FS) and generalized epilepsies of variable severity. Forty unrelated GEFS(+) and FS patients were screened for mutations in the sodium channel beta-subunits SCN1B and SCN2B, and the second GEFS(+) family with an SCN1B mutation is described here. The family had 19 affected individuals: 16 with typical GEFS(+) phenotypes and three with other epilepsy phenotypes. Site-specific mutation within SCN1B remains a rare cause of GEFS(+), and the authors found no evidence to implicate SCN2B in this syndrome.
Resumo:
This paper presents a personal view of the interaction between the analysis of choice under uncertainty and the analysis of production under uncertainty. Interest in the foundations of the theory of choice under uncertainty was stimulated by applications of expected utility theory such as the Sandmo model of production under uncertainty. This interest led to the development of generalized models including rank-dependent expected utility theory. In turn, the development of generalized expected utility models raised the question of whether such models could be used in the analysis of applied problems such as those involving production under uncertainty. Finally, the revival of the state-contingent approach led to the recognition of a fundamental duality between choice problems and production problems.
Resumo:
A model for finely layered visco-elastic rock proposed by us in previous papers is revisited and generalized to include couple stresses. We begin with an outline of the governing equations for the standard continuum case and apply a computational simulation scheme suitable for problems involving very large deformations. We then consider buckling instabilities in a finite, rectangular domain. Embedded within this domain, parallel to the longer dimension we consider a stiff, layered beam under compression. We analyse folding up to 40% shortening. The standard continuum solution becomes unstable for extreme values of the shear/normal viscosity ratio. The instability is a consequence of the neglect of the bending stiffness/viscosity in the standard continuum model. We suggest considering these effects within the framework of a couple stress theory. Couple stress theories involve second order spatial derivatives of the velocities/displacements in the virtual work principle. To avoid C-1 continuity in the finite element formulation we introduce the spin of the cross sections of the individual layers as an independent variable and enforce equality to the spin of the unit normal vector to the layers (-the director of the layer system-) by means of a penalty method. We illustrate the convergence of the penalty method by means of numerical solutions of simple shears of an infinite layer for increasing values of the penalty parameter. For the shear problem we present solutions assuming that the internal layering is oriented orthogonal to the surfaces of the shear layer initially. For high values of the ratio of the normal-to the shear viscosity the deformation concentrates in thin bands around to the layer surfaces. The effect of couple stresses on the evolution of folds in layered structures is also investigated. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
Several reports have suggested an interaction between the erythropoietin receptor (EpoR) and the shared signaling subunit (hbeta(c)) of the human granulocyte macrophage-colony stimulating factor (GM-CSF), interleukin (IL)-3, and IL-5 receptors, although the functional consequences of this interaction are unclear. We previously showed that in vivo expression of constitutively active extracellular (EC) mutants of hbeta(c) induces erythrocytosis and Epo independence of erythroid colony-forming units (CFU-E). This occurs despite an apparent requirement of these mutants for the GM-CSF receptor alpha-subunit (GMRalpha), which is not expressed in CFU-E. Here, we show that coexpression of hbeta(c) EC mutants and EpoR in BaF-B03 cells, which lack GMRalpha, results in factor-independent proliferation and JAK2 activation. Mutant receptors that cannot activate JAK2 fail to produce a functional interaction. As there is no detectable phosphorylation of hbeta(c). on intracellular tyrosine residues, EpoR displays constitutive tyrosine phosphorylation. These observations suggest that JAK2 activation mediates cross-talk between EC mutants of hbeta(c) and EpoR. The implications of these data are discussed as are our findings that activated hbeta(c) mutants can functionally interact with certain other cytokine receptors.
Resumo:
In this paper, it is shown that, for a wide range of risk-averse generalized expected utility preferences, independent risks are complementary, contrary to the results for expected utility preferences satisfying conditions such as proper and standard risk aversion.
Resumo:
In this study we demonstrate a new in-fermenter chemical extraction procedure that degrades the cell wall of Escherichia coli and releases inclusion bodies (IBs) into the fermentation medium. We then prove that cross-flow microfiltration can be used to remove 91% of soluble contaminants from the released IBs. The extraction protocol, based on a combination of Triton X-100, EDTA, and intracellular T7 lysozyme, effectively released most of the intracellular soluble content without solubilising the IBs. Cross-flow microfiltration using a 0.2 mum ceramic membrane successfully recovered the granulocyte macrophagecolony stimulating factor (GM-CSF) IBs with removal of 91% of the soluble contaminants and virtually no loss of IBs to the permeate. The filtration efficiency, in terms of both flux and transmission, was significantly enhanced by infermenter Benzonase(R) digestion of nucleic acids following chemical extraction. Both the extraction and filtration methods exerted their efficacy directly on a crude fermentation broth, eliminating the need for cell recovery and re-suspension in buffer. The processes demonstrated here can all be performed using just a fermenter and a single cross-flow filtration unit, demonstrating a high level of process intensification. Furthermore, there is considerable scope to also use the microfiltration system to subsequently solubilise the IBs, to separate the denatured protein from cell debris, and to refold the protein using diafiltration. In this way refolded protein can potentially be obtained, in a relatively pure state, using only two unit operations. (C) 2004 Wiley Periodicals Inc.