964 resultados para Generalized Legendre Functions
Resumo:
Contém resumo
Resumo:
The theory of orthogonal polynomials of one real or complex variable is well established as well as its generalization for the multidimensional case. Hypercomplex function theory (or Clifford analysis) provides an alternative approach to deal with higher dimensions. In this context, we study systems of orthogonal polynomials of a hypercomplex variable with values in a Clifford algebra and prove some of their properties.
Resumo:
A modified version of the metallic-phase pseudofermion dynamical theory (PDT) of the 1D Hubbard model is introduced for the spin dynamical correlation functions of the half-filled 1D Hubbard model Mott– Hubbard phase. The Mott–Hubbard insulator phase PDT is applied to the study of the model longitudinal and transverse spin dynamical structure factors at finite magnetic field h, focusing in particular on the sin- gularities at excitation energies in the vicinity of the lower thresholds. The relation of our theoretical results to both condensed-matter and ultra-cold atom systems is discussed.
Resumo:
Total generalized lipodystrophy (Berardinelli--Seip Syndrome) is a rare hereditary disease characterized by insulin-resistant diabetes mellitus and a small quantity of adipose tissue and is of unknown origin. Common cardiovascular alterations related to this syndrome are cardiac hypertrophy and arterial hypertension. This article reports a case of Berardinelli--Seip syndrome and reviews the literature with special emphasis on the cardiovascular manifestations of this syndrome.
Resumo:
OBJECTIVE: To evaluate the influence of systolic or diastolic dysfunction, or both on congestive heart failure functional class. METHODS: Thirty-six consecutive patients with a clinical diagnosis of congestive heart failure with sinus rhythm, who were seen between September and November of 1998 answered an adapted questionnaire about tolerance to physical activity for the determination of NYHA functional class. The patients were studied with transthoracic Doppler echocardiography. Two groups were compared: group 1 (19 patients in functional classes I and II) and group 2 (17 patients in functional classes III and IV). RESULTS: The average ejection fraction was significantly higher in group 1 (44.84%±8.04% vs. 32.59%±11.48% with p=0.0007). The mean ratio of the initial/final maximum diastolic filling velocity (E/A) of the left ventricle was significantly smaller in group 1 (1.07±0.72 vs. 1.98±1.49 with p=0.03). The average maximum systolic pulmonary venous velocity (S) was significantly higher in group 1 (53.53cm/s ± 12.02cm/s vs. 43.41cm/s ± 13.55cm/s with p=0.02). The mean ratio of maximum systolic/diastolic pulmonary venous velocity was significantly higher in group 1 (1.52±0.48 vs. 1.08±0.48 with p=0.01). A predominance of pseudo-normal and restrictive diastolic patterns existed in group 2 (58.83% in group 2 vs. 21.06% in group 1 with p=0.03). CONCLUSION: Both the systolic dysfunction index and the patterns of diastolic dysfunction evaluated by Doppler echocardiography worsened with the evolution of congestive heart failure.
Resumo:
Este proyecto propone extender y generalizar los procesos de estimación e inferencia de modelos aditivos generalizados multivariados para variables aleatorias no gaussianas, que describen comportamientos de fenómenos biológicos y sociales y cuyas representaciones originan series longitudinales y datos agregados (clusters). Se genera teniendo como objeto para las aplicaciones inmediatas, el desarrollo de metodología de modelación para la comprensión de procesos biológicos, ambientales y sociales de las áreas de Salud y las Ciencias Sociales, la condicionan la presencia de fenómenos específicos, como el de las enfermedades.Es así que el plan que se propone intenta estrechar la relación entre la Matemática Aplicada, desde un enfoque bajo incertidumbre y las Ciencias Biológicas y Sociales, en general, generando nuevas herramientas para poder analizar y explicar muchos problemas sobre los cuales tienen cada vez mas información experimental y/o observacional.Se propone, en forma secuencial, comenzando por variables aleatorias discretas (Yi, con función de varianza menor que una potencia par del valor esperado E(Y)) generar una clase unificada de modelos aditivos (paramétricos y no paramétricos) generalizados, la cual contenga como casos particulares a los modelos lineales generalizados, no lineales generalizados, los aditivos generalizados, los de media marginales generalizados (enfoques GEE1 -Liang y Zeger, 1986- y GEE2 -Zhao y Prentice, 1990; Zeger y Qaqish, 1992; Yan y Fine, 2004), iniciando una conexión con los modelos lineales mixtos generalizados para variables latentes (GLLAMM, Skrondal y Rabe-Hesketh, 2004), partiendo de estructuras de datos correlacionados. Esto permitirá definir distribuciones condicionales de las respuestas, dadas las covariables y las variables latentes y estimar ecuaciones estructurales para las VL, incluyendo regresiones de VL sobre las covariables y regresiones de VL sobre otras VL y modelos específicos para considerar jerarquías de variación ya reconocidas. Cómo definir modelos que consideren estructuras espaciales o temporales, de manera tal que permitan la presencia de factores jerárquicos, fijos o aleatorios, medidos con error como es el caso de las situaciones que se presentan en las Ciencias Sociales y en Epidemiología, es un desafío a nivel estadístico. Se proyecta esa forma secuencial para la construcción de metodología tanto de estimación como de inferencia, comenzando con variables aleatorias Poisson y Bernoulli, incluyendo los existentes MLG, hasta los actuales modelos generalizados jerárquicos, conextando con los GLLAMM, partiendo de estructuras de datos correlacionados. Esta familia de modelos se generará para estructuras de variables/vectores, covariables y componentes aleatorios jerárquicos que describan fenómenos de las Ciencias Sociales y la Epidemiología.
Resumo:
Las reducciones jesuíticas en Argentina reconocen generalmente un único aporte en la región guaraní. Pero lo cierto es que una cantidad importante de reducciones, equivalente en número con las anteriormente mencionadas, se desarrollaron en el interior del país, fundamentalmente en las regiones del Chaco, noroeste y sur argentino. Muchas de ellas reconocen hoy su continuidad en centros urbanos y otras tan sólo, y en el mejor de los casos, en vestigios arqueológicos. Se propone el análisis de este conjunto desde las primeras incursiones en "misiones volantes" en el siglo XVII hasta la expulsión de los jesuitas en 1767. También se abordarán las modalidades y procesos generadores de centros reduccionales en estas regiones y sus interrelaciones territoriales. Además se pretende analizar sus funciones y morfologías originales, su evolución, traslados y posibles transformaciones posteriores, en las etapas previas al impacto originado ante la ausencia de la Compañía de Jesús. Los resultados incluirán la interpretación de los procesos formativos, con su diversidad de casos, en escalas regionales y locales, la recopilación de cartografía regional y urbana, y la determinación de series tipológicas de formas de trazados y organizaciones de tejidos, tanto en las demarcaciones de origen como en sus remodelaciones y ensanches cuando así correspondiere.
Resumo:
En nuestro proyecto anterior aproximamos el cálculo de una integral definida con integrandos de grandes variaciones funcionales. Nuestra aproximación paraleliza el algoritmo de cómputo de un método adaptivo de cuadratura, basado en reglas de Newton-Cote. Los primeros resultados obtenidos fueron comunicados en distintos congresos nacionales e internacionales; ellos nos permintieron comenzar con una tipificación de las reglas de cuadratura existentes y una clasificación de algunas funciones utilizadas como funciones de prueba. Estas tareas de clasificación y tipificación no las hemos finalizado, por lo que pretendemos darle continuidad a fin de poder informar sobre la conveniencia o no de utilizar nuestra técnica. Para llevar adelante esta tarea se buscará una base de funciones de prueba y se ampliará el espectro de reglas de cuadraturas a utilizar. Además, nos proponemos re-estructurar el cálculo de algunas rutinas que intervienen en el cómputo de la mínima energía de una molécula. Este programa ya existe en su versión secuencial y está modelizado utilizando la aproximación LCAO. El mismo obtiene resultados exitosos en cuanto a precisión, comparado con otras publicaciones internacionales similares, pero requiere de un tiempo de cálculo significativamente alto. Nuestra propuesta es paralelizar el algoritmo mencionado abordándolo al menos en dos niveles: 1- decidir si conviene distribuir el cálculo de una integral entre varios procesadores o si será mejor distribuir distintas integrales entre diferentes procesadores. Debemos recordar que en los entornos de arquitecturas paralelas basadas en redes (típicamente redes de área local, LAN) el tiempo que ocupa el envío de mensajes entre los procesadores es muy significativo medido en cantidad de operaciones de cálculo que un procesador puede completar. 2- de ser necesario, paralelizar el cálculo de integrales dobles y/o triples. Para el desarrollo de nuestra propuesta se desarrollarán heurísticas para verificar y construir modelos en los casos mencionados tendientes a mejorar las rutinas de cálculo ya conocidas. A la vez que se testearán los algoritmos con casos de prueba. La metodología a utilizar es la habitual en Cálculo Numérico. Con cada propuesta se requiere: a) Implementar un algoritmo de cálculo tratando de lograr versiones superadoras de las ya existentes. b) Realizar los ejercicios de comparación con las rutinas existentes para confirmar o desechar una mejor perfomance numérica. c) Realizar estudios teóricos de error vinculados al método y a la implementación. Se conformó un equipo interdisciplinario integrado por investigadores tanto de Ciencias de la Computación como de Matemática. Metas a alcanzar Se espera obtener una caracterización de las reglas de cuadratura según su efectividad, con funciones de comportamiento oscilatorio y con decaimiento exponencial, y desarrollar implementaciones computacionales adecuadas, optimizadas y basadas en arquitecturas paralelas.
Resumo:
Neuroimaging, functional image analysis, spatial model, cortical surface, spatially variable convolution
Resumo:
Vectorial Boolean function, almost bent, almost perfect nonlinear, affine equivalence, CCZ-equivalence
Resumo:
Magdeburg, Univ., Fak. für Elektrotechnik und Informationstechnik, Diss., 2007
Resumo:
L'anàlisi de la densitat urbana és utilitzada per examinar la distribució espacial de la població dins de les àrees urbanes, i és força útil per planificar els serveis públics. En aquest article, s'estudien setze formes funcionals clàssiques de la relació existent entre la densitat i la distancia en la regió metropolitana de Barcelona i els seus onze subcentres.