991 resultados para Gel strength


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Antiferroelectricity of sol-gel grown pure and La modified PbZrO3 thin films, with a maximum extent of 6 mol%, has been characterized by temperature dependent P-E hysteresis loops within the applied electric field of 60 MV/m. It has been seen that on extent of La modification electric field induced phase transformation can be altered and at 40 degrees C its maximum value has been observed at +/- 38 MV/m on 6 mol% modifications whereas the minimum value is +/- 22 MV/m on 1 mol%. On La modification the variation of electric field induced phase transformations at 40 degrees C has been correlated with the temperature of ntiferroelectric phase condensation on cooling. The critical electric fields for saturated P-E hysteresis loops have been defined from field dependent maximum polarizations and their variations on La modification show a similar trend as found in their dielectric phase transition temperatures. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pb0.76Ca0.24TiO3 (PCT24) nanoparticles were synthesized by modified sal gel method and characterized by a number of experimental techniques such as X-ray diffraction, TGA-DTA, FTIR and transmission electron microscopy equipped with energy-dispersive X-ray spectroscopy (EDX). X-ray diffraction (XRD) and selected-area electron diffraction (SAED) investigations demonstrated that the postannealed (650 degrees C for 1 h) PCT24 nanoparticles have tetragonal perovskite crystal structure. TEM have been employed to characterize the morphology, structure and composition of the as prepared nanoparticles. Dielectric results indicates the evidence for relaxor type behavior while observed leaky ferroelectric loops may be because of the defects such as grain boundaries and the pores in the sample as the sample was not heated at higher temperature, to retain the nanosize dimension of the particles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A total synthesis of the bioactive tetracyclic natural product acremine G has been achieved in which a regio- and stereoselective biomimetic Diels-Alder reaction between two readily assembled building blocks, accelerated on a solid support (silica gel), forms the key step. (c) 2010 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Zinc oxide (ZnO) thin films have been deposited on glass substrates via sol-gel technique using zinc acetate dihydrate as precursor by spin coating of the sol at 2000 rpm. Effects of annealing temperature on optical, structural and photo luminescence properties of the deposited ZnO films have been investigated. The phase transition from amorphous to polycrystalline hexagonal wurtzite structure was observed at an annealing temperature of 400 degrees C. An average transmittance of 87% in the visible region has been obtained at room temperature. The optical transmittance has slightly increased with increase of annealing temperature. The band gap energy was estimated by Tauc's method and found to be 3.22 eV at room temperature. The optical band gap energy has decreased with increasing annealing temperature. The photoluminescence (PL) intensity increased with annealing temperature up to 200 degrees C and decreased at 300 degrees C. (c) 2010 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Several methods are available for predicting flexural strength of steel fiber concrete composites. In these methods, direct tensile strength, split cylinder strength, and cube strength are the basic engineering parameters that must be determined to predict the flexural strength of such composites. Various simplified forms of stress distribution are used in each method to formulate the prediction equations for flexural strength. In this paper, existing methods are reviewed and compared, and a modified empirical approach is developed to predict the flexural strength of fiber concrete composites. The direct tensile strength of the composite is used as the basic parameter in this approach. Stress distribution is established from the findings of flexural tests conducted as part of this investigation on fiber concrete prisms. A comparative study of the test values of an earlier investigation on fiber concrete slabs and the computed values from existing methods, including the one proposed, is presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An attempt to systematically investigate the effects of microstructural parameters in influencing the resistance to fatigue crack growth (FCG) in the near-threshold region under three different temper levels has been made for a high strength low alloy steel to observe in general, widely different trends in the dependence of both the total threshold stress intensity range, DELTA-K(th) and the intrinsic or effective threshold stress intensity range, DELTA-K(eff-th) on the prior austenitic grain size (PAGS). While a low strain hardening microstructure obtained by tempering at high temperatures exhibited strong dependence of DELTA-K(th) on the PAGS by virtue of strong interactions of crack tip slip with the grain boundary, a high strength, high strain hardening microstructure as a result of tempering at low temperature exhibited a weak dependence. The lack of a systematic variation of the near-threshold parameters with respect to grain size in temper embrittled structures appears to be related to the wide variations in the amount of intergranular fracture near threshold. Crack closure, to some extent provides a basis on which the increases in DELTA-K(th) at larger grain sizes can be rationalised. This study, in addition, provides a wide perspective on the relative roles of slip behaviour embrittlement and environment that result in the different trends observed in the grain size dependence of near-threshold fatigue parameters, based on which the inconsistency in the results reported in the literature can be clearly understood. Assessment of fracture modes through extensive fractography revealed that prior austenitic grain boundaries are effective barriers to cyclic crack growth compared to martensitic packet boundaries, especially at low stress intensities. Fracture morphologies comprising of low energy flat transgranular fracture can occur close to threshold depending on the combinations of strain hardening behaviour, yield strength and embrittlement effects. A detailed consideration is given to the discussion of cyclic stress strain behaviour, embrittlement and environmental effects and the implications of these phenomena on the crack growth behaviour near threshold.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we describe a method for the optimum design of fiber rein forced composite laminates for strength by ranking. The software developed based on this method is capable of designing laminates for strength; which are subjected to inplane and/or bending loads and optionally hygrothermal loads. Symmetric laminates only are considered which are assumed to be made of repeated sublaminate construction. Various layup schemes are evaluated based on the laminated plate theory and quadratic failure cri terion for the given mechanical and hygrothermal loads. The optimum layup sequence in the sublaminate and the number of such sublaminates required are obtained. Further, a ply-drop round-off scheme is adopted to arrive at an optimum laminate thickness. As an example, a family of 0/90/45/ -45 bi-directional lamination schemes are examined for dif ferent types of loads and the gains in optimising the ply orientations in a sublaminate are demonstrated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mechanical joints in composites can be tailored to achieve improved performance and better life by appropriately selecting the laminate parameters. In order to gain the best advantage of this possibility of tailoring the laminate, it is necessary to understand the influence of laminate parameters on the behaviour of joints in composites. Most of the earlier studies in this direction were based on simplified assumptions regarding load transfer at the pin-plate interface and such studies were only carried out on orthotropic and quasi-isotropic laminates. In the present study, a more rigorous analysis is carried out to study pin joints in laminates with anisotropic properties. Two types of laminates with (0/ + ?4/90)s and (0/ ± ?2/90)s layups made out of graphite epoxy T300/5208 material system are considered. The analysis mainly concentrates on clearance fit in which the pin is of smaller diameter compared to the hole. The main aspect of the analysis of pin joints is the changing contact between the pin and the plate with increasing load levels. The analysis is carried out by an iterative finite element technique and a computationally efficient routine is developed for this purpose. Numerical studies indicate that the location and magnitude of the peak stresses along the hole boundary are functions of fibre angle and the overall anisotropic properties. It is also shown that the conventional assumption of cosine distribution for the contact pressure between pin and the plate in the analysis lead to underestimation of bearing failure load and overestimation of shear and tensile failure loads in typical (0/905)s cross-ply laminates.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Description of gel-to-crystallite conversion process is made towards the synthesis of nanocrystalline titanates and aluminates. Thermodynamic and kinetic factors governing the conversion of a gel to meta-stable and stable nanocrystalline products(s) are discussed. Correlations between these factors and the preparative conditions employed for the syntheses of titanates and aluminates are arrived at.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sol-Gel method was employed to synthesize pure and wide ranged La-modified CaCu3Ti4O12 ceramics using mixed acetate-nitrate-alcoxide individual metal-ion precursors. SEM pictures revealed that grain size monotonously decreases with the extent of La incorporation. All the prepared ceramics manifested dielectric constant in the range similar to 10(3)-10(4). Dielectric loss was found to decrease with La incorporation and got optimized for 20% La3+ while retaining its high dielectric constant which may be industrially important. Room temperature Impedance spectroscopy suggested that decrease in grain resistance is responsible for reduction in dielectric loss according to Internal Barrier Layer Capacitor (IBLC) model.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Test results of 12 reinforced concrete (RC) wall panels with openings are presented. The panels have been subjected to in-plane vertical loads applied at an eccentricity to represent possible accidental eccentricity that occurs in practice due to constructional imperfections. The 12 specimens consist of two identical groups of six panels each. One group of panels is tested in one-way in-plane action (i.e., supported at top and bottom edges against lateral displacement). The second group of panels is tested in two-way in-plane action (i.e., supported on all the four edges against lateral displacement). Openings in the panels represent typical door and window openings. Cracking loads, ultimate loads, crack patterns, and lateral deflections of the panels are studied. Empirical methods have been developed for the prediction of ultimate load. Also, lateral deflections, cracking loads, and ultimate loads of identical loads tested under one-way and two-way action are compared.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Test results of 24 reinforced concrete wall panels in two-way action (i.e., supported on all the four sides) and subjected to in-plane vertical load are presented. The load is applied at an eccentricity to represent possible accidental eccentricity that occurs in practice due to constructional imperfections. Influences of aspect ratio, thinness ratio, slendemess ratio, vertical steel, and horizontal steel on the ultimate load are studied. Two equations are proposed to predict the ultimate load carried by the panels. The first equation is empirical and is arrived at from trial and error fitting with test data. The second equation is semi-empirical and is developed from a modification of the buckling strength of thin rectangular plates. Both the equations are formulated so as to give a safe prediction of a large portion of ultimate strength test results. Also, ultimate load cracking load and lateral deflections of identical panels in two-way action (all four sides supported) and oneway action (top and bottom sides only supported) are compared.