961 resultados para Gel permeation chromatography
Resumo:
The conditions for maximization of the enzymatic activity of lipase entrapped in sol-gel matrix were determined for different vegetable oils using an experimental design. The effects of pH, temperature, and biocatalyst loading on lipase activity were verified using a central composite experimental design leading to a set of 13 assays and the surface response analysis. For canola oil and entrapped lipase, statistical analyses showed significant effects for pH and temperature and also the interactions between pH and temperature and temperature and biocatalyst loading. For the olive oil and entrapped lipase, it was verified that the pH was the only variable statistically significant. This study demonstrated that response surface analysis is a methodology appropriate for the maximization of the percentage of hydrolysis, as a function of pH, temperature, and lipase loading.
Resumo:
Neodymium doped and undoped aluminum oxide samples were obtained using two different techniques: Pechini and sol-gel. Fine grained powders were produced using both procedures, which were analyzed using Scanning Electron Microscopy (SEM) and Thermo-Stimulated Luminescence (TSL). Results showed that neodymium ions incorporation is responsible for the creation of two new TSL peaks (125 and 265 degrees C) and, also, for the enhancement of the intrinsic TSL peak at 190 degrees C. An explanation was proposed for these observations. SEM gave the dimensions of the clusters produced by each method, showing that those obtained by Pechini are smaller than the ones produced by sol-gel; it can also explain the higher emission supplied by the first one. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
This paper describes the procedures of the analysis Of Pollutant gases, as volatile organic compounds (benzene, toluene, ethylbenzene, o-xylene, m-xylene and p-xylene) emitted by engines, using high-resolution gas chromatography (HRGC). In a broad sense, CI engine burning diesel was compared with B10 and a drastic reduction was observed in the emissions of the aromatic compounds by using B10. Especially for benzene, the reduction of concentrations occurs on the level of about 19.5%. Although a concentration value below 1 mu g ml(-1) has been obtained, this reduction is extremely significant since benzene is a carcinogenic compound. (c) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Thermoluminescence (TL) and Optically Stimulated Luminescence (OSL) properties of KAlSi(3)O(8):Mn glasses obtained through the sol gel technique were investigated. Samples were obtained with five different molar concentrations of 0.25, 0.5, 1, 2 and 5 mol% of manganese. Transmission Electronic Microscopy (TEM) indicated the occurrence of nanoparticles composed by glass matrix elements with Mn. Best results for TL response were obtained with 0.5 mol% Mn doped sample, which exhibits a TL peak at 180 degrees C. The TL spectrum of this sample presents a broad emission band from 450 to 700 nm with a peak at 575 nm approximately. The emission band fits very well with the characteristic lines of the Mn(2+) emission features. According to this fact, the band at 410 nm can be ascribed to (6)A(1)(S) -> (4)A(1)(G), (4)E(G) transition, while the 545 nm band can be attributed to the superposition of the transitions (6)A(1)(S) -> (4)T(2)(G) and (6)A(1)(S) -> (4)T(1)(G). The dependence of the TL response with the energy of X-rays (27-41 keV) showed a small decrease of the TL intensity in the high energy region. Excitation with blue LEDs showed OSL in the UV region with a fast decay component. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
The soil organic matter (SOM) extracted under different vegetation types from a Brazilian mangrove (Pai Matos Island, Sao Paulo State) and from three Spanish salt marshes (Betanzos Ria and Corrubedo Natural Parks, Galicia, and the Albufera Natural Park, Valencia) was investigated by pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS). The chemical variation was larger in SOM from the Spanish marshes than in the SOM of the Brazilian mangroves, possibly because the marshes included sites with both tidal and nontidal variation, whereas the mangrove forest underwent just tidal variation. Thus, plant-derived organic matter was better preserved under permanently anoxic environments. Moreover, given the low number of studied profiles and sedimentary-vegetation sequences in both areas, depth trends remain unclear. The chemical data also allow distinction between the contributions of woody and nonwoody vegetation inputs. Soil organic matter decomposition was found to cause: (i) a decrease in lignin contents and a relative increase in aliphatics; (ii) an increase in short-chain aliphatics at the expense of longer ones; (iii) a loss of odd-over-even dominance in alkanes and alkenes; and (iv) an increase in microbial products, including proteins, sterols, short-chain fatty acids, and alkanes. Pyrolysis-gas chromatography/mass spectrometry is a useful tool to study the behavior and composition of SOM in wetland environments such as mangroves and salt marshes. Additional profiles need to be studied for each vegetation type, however, to improve the interpretability of the chemical data.
Resumo:
A number of fatty acid ethyl esters (FAEEs) have recently been detected in meconium samples. Several of these FAEEs have been evaluated as possible biomarkers for in utero ethanol exposure. In the present study, a method was optimized and validated for the simultaneous determination of eight FAEEs (ethyl laurate, ethyl myristate, ethyl palmitate, ethyl palmitoleate, ethyl stearate, ethyl oleate, ethyl linoleate and ethyl arachidonate) in meconium samples. FAEEs were extracted by headspace solid-phase microextraction. Analyte detection and quantification were carried out using GC-MS operated in chemical ionization mode. The corresponding D5-ethyl esters were synthesized and used as internal standards. The LOQ and LOD for each analyte were <150 and <100 ng/g, respectively. The method showed good linearity (r(2)>0.98) in the concentration range studied (LOQ -2000 ng/g). The intra- and interday imprecision, given by the RSD of the method, was lower than 15% for all FAEEs studied. The validated method was applied to 63 authentic specimens. FAEEs could be detected in alcohol-exposed newborns ( >600 ng/g cumulative concentration). Interestingly, FAEEs could also be detected in some non-exposed newborns, although the concentrations were much lower than those measured in exposed cases.
Resumo:
Anatoxin-a(s) is a potent irreversible inhibitor of the enzyme acetylcholinesterase with a unique N-hydroxyguanidine methylphosphate ester chemical structure. Determination of this toxin in environmental samples is hampered by the lack of specific methods for its detection. Using the toxic strain of Anabaena lemmermani PH-160 B as positive control, the fragmentation characteristics of anatoxin-a(s) under collision-induced dissociation conditions have been investigated and new LC-MS/MS methods proposed. Recommended ion transitions for correct detection of this toxin are 253 > 58, 253 > 159, 235 > 98 and 235 > 96. Chromatographic separation is better achieved under HILIC conditions employing a ZIC-HILIC column. This method was used to confirm for the first time the production of anatoxin-a(s) by strains of Anabaena oumiana ITEP-025 and ITEP-026. Considering no standard solutions are commercially available, our results will be of significant use for the correct identification of this toxin by LC-MS/MS. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
A novel microemulsion electrokinetic capillary chromatography (MEEKC) method has been developed which separates a range of nine steroids. A microemulsion containing ethyl acetate, butan-1-ol, sodium dodecyl sulfate, 15% (v/v) acetonitrile and 12 mmol L(-1) sodium tetraborate aqueous buffer at pH 9.2 was used with direct UV detection at 200 nm. The method was validated for the determination of 17 beta-estradiol content, a hormone steroid, in transdermal patches. Adequate sensitivity (DL = 0.88 mu g mL(-1); QL = 2.65 mu g mL(-1)) without interference from sample excipients was obtained. 17 beta-Estradiol migrates in approximately 5.4 min. Estrone was used as internal standard and acceptable precision (< 1.2% RSD), linearity (r = 0.9996; range from 40.0 to 60.0 mu g mL(-1)), and recovery (100.4 +/- A 0.9% at three concentration levels) were obtained. The principal advantage of the method is that it is rapid and avoids the need of time consuming and expensive sample pre-treatment steps.
Resumo:
New fast liquid chromatographic and capillary zone electrophoresis methods were developed and validated for simultaneous determination of atenolol and chlortalidone in combined dose tablets. The reversed phase HPLC method was carried out on a CN LiChrosorb (R) (125 x 4 mm, 5 mu m) column. The CZE method was carried out on an uncoated fused-silica capillary of 30 cm x 75 mu m i.d. with 25 mmol L(-1) sodium tetraborate, pH 9.4. The total analysis time was <6 and <2.5 min for HPLC and CZE methods, respectively. Both methods can be used for stability studies as well.
Resumo:
Saccharomyces cerevisiae has been used in genotoxicity and cytotoxicity assays for several years before the Ames Test approach. However the cell permeability of yeast has been considered a limitant factor to this kind of assay and many researchers have been introducing genetic modifications into wild strains to improve the sensitivity to chemical compounds. In our study, we used Saccharomyces cerevisiae ATCC 9763, well known and very common strain in antibiotic assays, and we evaluated the cytotoxicity of some antineoplastic agents (etoposide, epirubicin, carboplatin, cisplatin and mitoxantrone). Each culture was observed under the light of microscope and photographed. Neither genetic modification nor addition of permeation inducers, as dimethylsulfoxide (DMSO), were introduced during the assays and the cells presented good sensitivity to those compounds, demonstrating that other potential strains and characteristics of cells should be reconsidered to improve these assays apart from the cellular permeability.
Resumo:
Many therapeutic agents are commercialized under their racemic form. The enantiomers can show differences in the pharmacokinetic and pharmacodynamic profile. The use of a pure enantiomer in pharmaceutical formulations may result in a better therapeutic index and fewer adverse effects. Atropine, an alkaloid of Atropa belladonna, is a racemic mixture of l-hyoscyamine and d-hyoscyamine. It is widely used to dilate the pupil. To quantify these enantiomers in ophthalmic solutions, an HPLC method was developed and validated using a Chiral AGP (R) column at 20 degrees C. The mobile phase consisted of a buffered phosphate solution (containing 10 mM 1-octanesulfonic acid sodium salt and 7.5 mM triethylamine, adjusted to pH 7.0 with orthophosphoric acid) and acetonitrile (99 + 1, v/v). The flow rate was 0.6 mL/min, with UV detection at 205 nm. In the concentration range of 14.0-26.0 mu g/mL, the method was found to be linear (r > 0.9999), accurate (with recovery of 100.1-100.5%), and precise (RSD system: <= 0.6%; RSD intraday: <= 1.1%; RSD interday: <= 0.9%). The method was specific, and the standard and sample solutions were stable for up to 72 h. The factorial design assures robustness with a variation of +/-10% in the mobile phase components and 2 degrees C of column temperature. The complete validation, including stress testing and factorial design, was studied and is presented in this research.
Resumo:
Choline citrate (CC) and acetylmethionine (AM) are lipotropic drugs used in several pharmaceutical formulations. The objective of this research was to develop and validate a high performance liquid chromatographic (HPLC) method for simultaneous determination of CC and AM in injectable solutions, aiming its application in routine analysis for quality control of these pharmaceutical formulations. The method was validated using a Shim-Pack (R) C18 (250 x 4.6 mm, 5 mu m) column. The mobile phase was constituted of 25 mM potassium phosphate buffer solution, pH 5.7, adjusted with 10 % orthophosphoric acid, acetonitrile and methanol (88:10:2, v/v/v). The flow rate was 1.1 mL.min(-1) and the UV detection was made at 210 nm. The analyses were made at room temperature (25 +/- 1 degrees C). The method is precise, selective, accurate and robust, and was successfully applied for simultaneous quantitative determination of CC and AM in injectables.
Resumo:
A reversed-phase high performance liquid chromatographic (RP-HPLC) method for determination of econazole nitrate, preservatives (methylparaben and propylparaben) and its main impurities (4-chlorobenzl alcohol and alpha-(2,4-dicholorophenyl)-1H-imidazole-1-ethanol) in cream formulations, has been developed and validated. Separation was achieved on a column Bondclone (R) C18 (300 mm x 3.9 mm i.d., 10 mu m) using a gradient method with mobile phase composed of methanol and water. The flow rate was 1.4 mL min(-1), temperature of the column was 25 C and the detection was made at 220 nm. Miconazole nitrate was used as an internal standard. The total run time was less than 15 min, The analytical curves presented coefficient of correlation upper to 0.99 and detection and quantitation limits were calculated for all molecules. Excellent accuracy and precision were obtained for econazole nitrate. Recoveries varied from 97.9 to 102.3% and intra- and inter-day precisions, calculated as relative standard deviation (R.S.D), were lower than 2.2%. Specificity, robustness and assay for econazole nitrate were also determined. The method allowed the quantitative determination of econazole nitrate, its impurities and preservatives and could be applied as a stability-indicating method for econazole nitrate in cream formulations. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
The aim of this study was to develop and validate selective and sensitive methods for quantitative determination of an antibacterial agent, gemifloxacin, in tablets by high performance liquid chromatography (HPLC) and capillary zone electrophoresis (CZE). The HPLC method was carried out on a LiChrospher (R) 100 RP-8e, 5 mu m (125 x 4 mm) column with a mobile phase composed of tetrahydrofuran-water (25:75, v/v) with 0.5 % of triethylamine and pH adjusted to 3.0 with orthophosphoric acid. The CZE method was performed using 50 mM sodium tetraborate buffer (pH 8.6). Samples were injected hydrodynamicaly (0.5 psi, 5 s) and the electrophoretic system was operated under normal polarity, at +20 kV and capillary temperature of 18 degrees C. A fused-silica capillary 40.2 cm (30 cm effective length) x 75 mu m i.d. was used. Both, HPLC and CZE could be interesting and efficient techniques to be applied for quality control in pharmaceutical industries.
Resumo:
The purpose of this study was to develop and validate analytical methods for determination of amlodipine besylate in tablets. Simple, accurate and precise liquid chromatographic and spectrophotometric methods are proposed. For the chromatographic method, the conditions were: a LiChrospher (R) 100 RP-18 Merck (R) (125 mm x 4.6 mm, 5 mu m) column; methanol/water containing 1 % of trietylamine adjusted to pH 5.0 with phosphoric acid (35:65) as mobile phase; a flow rate of 1.0 mL/min and UV detector at 238 nm. Linearity was in the range of 50.0 - 350.0 mu g/mL with a correlation coefficient (r) = 0.9999. For the spectrophotometric method, the first dilutions of samples were performed in methanol and the consecutives in ultrapure water. The quantitation was made at 364.4 nm. Linearity was determined within the range of 41.0 - 61.0 mu g/mL with a correlation coefficient (r) = 0.9996. Our results demonstrate that both methods can be used in routine analysis for quality control of tablets containing amlodipine besylate.