933 resultados para GOES (Meteorological satellite)
Resumo:
Long term, high quality estimates of burned area are needed for improving both prognostic and diagnostic fire emissions models and for assessing feedbacks between fire and the climate system. We developed global, monthly burned area estimates aggregated to 0.5° spatial resolution for the time period July 1996 through mid-2009 using four satellite data sets. From 2001ĝ€ "2009, our primary data source was 500-m burned area maps produced using Moderate Resolution Imaging Spectroradiometer (MODIS) surface reflectance imagery; more than 90% of the global area burned during this time period was mapped in this fashion. During times when the 500-m MODIS data were not available, we used a combination of local regression and regional regression trees developed over periods when burned area and Terra MODIS active fire data were available to indirectly estimate burned area. Cross-calibration with fire observations from the Tropical Rainfall Measuring Mission (TRMM) Visible and Infrared Scanner (VIRS) and the Along-Track Scanning Radiometer (ATSR) allowed the data set to be extended prior to the MODIS era. With our data set we estimated that the global annual area burned for the years 1997ĝ€ "2008 varied between 330 and 431 Mha, with the maximum occurring in 1998. We compared our data set to the recent GFED2, L3JRC, GLOBCARBON, and MODIS MCD45A1 global burned area products and found substantial differences in many regions. Lastly, we assessed the interannual variability and long-term trends in global burned area over the past 13 years. This burned area time series serves as the basis for the third version of the Global Fire Emissions Database (GFED3) estimates of trace gas and aerosol emissions.
Resumo:
Space-borne thermal infrared instruments working in the nadir geometry are providing spectroscopic measurements of species that impact on the chemical composition of the atmosphere and on the climate forcing: H2O, CO2, N2O, CH4, CFCs, O3, and CO. The atmospheric abundances obtained from the analysis of IMG/ADEOS measurements are discussed in order to demonstrate the potential scientific return to be expected from future missions using advanced infrared nadir sounders. Some strengths and limitations of passive infrared remote sensing from space are illustrated. © 2003 European Geosciences Union.
Resumo:
p.109-119
Resumo:
There is concern in the Cross-Channel region of Nord-Pas-de-Calais (France) and Kent (Great Britain), regarding the extent of atmospheric pollution detected in the area from emitted gaseous (VOC, NOx, S02)and particulate substances. In particular, the air quality of the Cross-Channel or "Trans-Manche" region is highly affected by the heavily industrial area of Dunkerque, in addition to transportation sources linked to cross-channel traffic in Kent and Calais, posing threats to the environment and human health. In the framework of the cross-border EU Interreg IIIA activity, the joint Anglo-French project, ATTMA, has been commissioned to study Aerosol Transport in the Trans-Manche Atmosphere. Using ground monitoring data from UK and French networks and with the assistance of satellite images the project aims to determine dispersion patterns. and identify sources responsible for the pollutants. The findings of this study will increase awareness and have a bearing on future air quality policy in the region. Public interest is evident by the presence of local authorities on both sides of the English Channel as collaborators. The research is based on pollution transport simulations using (a) Lagrangian Particle Dispersion (LPD) models, (b) an Eulerian Receptor Based model. This paper is concerned with part (a), the LPD Models. Lagrangian Particle Dispersion (LPD) models are often used to numerically simulate the dispersion of a passive tracer in the planetary boundary layer by calculating the Lagrangian trajectories of thousands of notional particles. In this contribution, the project investigated the use of two widely used particle dispersion models: the Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT) model and the model FLEXPART. In both models forward tracking and inverse (or·. receptor-based) modes are possible. Certain distinct pollution episodes have been selected from the monitor database EXPER/PF and from UK monitoring stations, and their likely trajectory predicted using prevailing weather data. Global meteorological datasets were downloaded from the ECMWF MARS archive. Part of the difficulty in identifying pollution sources arises from the fact that much of the pollution outside the monitoring area. For example heightened particulate concentrations are to originate from sand storms in the Sahara, or volcanic activity in Iceland or the Caribbean work identifies such long range influences. The output of the simulations shows that there are notable differences between the formulations of and Hysplit, although both models used the same meteorological data and source input, suggesting that the identification of the primary emissions during air pollution episodes may be rather uncertain.
Resumo:
The Sahara desert is a significant source of particulate pollution not only to the Mediterranean region, but also to the Atlantic and beyond. In this paper, PM 10 exceedences recorded in the UK and the island of Crete are studied and their source investigated, using Lagrangian Particle Dispersion (LPD) methods. Forward and inverse simulations identify Saharan dust storms as the primary source of these episodes. The methodology used allows comparison between this primary source and other possible candidates, for example large forest fires or volcanic eruptions. Two LPD models are used in the simulations, namely the open source code FLEXPART and the proprietary code HYSPLIT. Driven by the same meteorological fields (the ECMWF MARS archive and the PSU/NCAR Mesoscale model, known as MM5) the codes produce similar, but not identical predictions. This inter-model comparison enables a critical assessment of the physical modelling assumptions employed in each code, plus the influence of boundary conditions and solution grid density. The outputs, in the form of particle concentrations evolving in time, are compared against satellite images and receptor data from multiple ground-based sites. Quantitative comparisons are good, especially in predicting the time of arrival of the dust plume in a particular location.
Resumo:
Research around ingesting /public perceptions of ‘secret’ and exploring other narratives around our perceptions of food and eating.
Resumo:
Processes of enrichment, concentration and retention are thought to be important for the successful recruitment of small pelagic fish in upwelling areas, but are difficult to measure. In this study, a novel approach is used to examine the role of spatio-temporal oceanographic variability on recruitment success of the Northern Benguela sardine Sardinops sagax. This approach applies a neural network pattern recognition technique, called a self-organising map (SOM), to a seven-year time series of satellite-derived sea level data. The Northern Benguela is characterised by quasi-perennial upwelling of cold, nutrient-rich water and is influenced by intrusions of warm, nutrient-poor Angola Current water from the north. In this paper, these processes are categorised in terms of their influence on recruitment success through the key ocean triad mechanisms of enrichment, concentration and retention. Moderate upwelling is seen as favourable for recruitment, whereas strong upwelling, weak upwelling and Angola Current intrusion appear detrimental to recruitment success. The SOM was used to identify characteristic patterns from sea level difference data and these were interpreted with the aid of sea surface temperature data. We found that the major oceanographic processes of upwelling and Angola Current intrusion dominated these patterns, allowing them to be partitioned into those representing recruitment favourable conditions and those representing adverse conditions for recruitment. A marginally significant relationship was found between the index of sardine recruitment and the frequency of recruitment favourable conditions (r super(2) = 0.61, p = 0.068, n = 6). Because larvae are vulnerable to environmental influences for a period of at least 50 days after spawning, the SOM was then used to identify windows of persistent favourable conditions lasting longer than 50 days, termed recruitment favourable periods (RFPs). The occurrence of RFPs was compared with back-calculated spawning dates for each cohort. Finally, a comparison of RFPs with the time of spawning and the index of recruitment showed that in years where there were 50 or more days of favourable conditions following spawning, good recruitment followed (Mann-Whitney U-test: p = 0.064, n = 6). These results show the value of the SOM technique for describing spatio-temporal variability in oceanographic processes. Variability in these processes appears to be an important factor influencing recruitment in the Northern Benguela sardine, although the available data time series is currently too short to be conclusive. Nonetheless, the analysis of satellite data, using a neural network pattern-recognition approach, provides a useful framework for investigating fisheries recruitment problems.
Resumo:
A modelling scheme is described which uses satellite retrieved sea-surface temperature and chlorophyll-a to derive monthly zooplankton biomass estimates in the eastern North Atlantic; this forms part of a bio-physical model of inter-annual variations in the growth and survival of larvae and post-larvae of mackerel (Scomber scombrus). The temperature and chlorophyll data are incorporated first to model copepod (Calanus) egg production rates. Egg production is then converted to available food using distribution data from the Continuous Plankton Recorder (CPR) Survey, observed population biomass per unit daily egg production and the proportion of the larval mackerel diet comprising Calanus. Results are validated in comparison with field observations of zooplankton biomass. The principal benefit of the modelling scheme is the ability to use the combination of broad scale coverage and fine scale temporal and spatial variability of satellite data as driving forces in the model; weaknesses are the simplicity of the egg production model and the broad-scale generalizations assumed in the raising factors to convert egg production to biomass.