478 resultados para GAAS HETEROSTRUCTURES
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Ciência e Tecnologia de Materiais - FC
Resumo:
Pós-graduação em Ciência e Tecnologia de Materiais - FC
Resumo:
Pós-graduação em Ciência e Tecnologia de Materiais - FC
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Pós-graduação em Química - IQ
Resumo:
The aim of this study was to evaluate the effects of a Gallium Arsenide (GaAs) laser, using a high final energy of 4.8J, during muscle regeneration after cryoinjury. Thirty Wistar rats were divided into three groups: Control (C, n=10); Injured (I, n=10) and Injured and laser treated (Injured/LLLT, n=10). The cryoinjury was induced in the central region of the tibialis anterior muscle (TA). The applications of the laser (904nm, 50mW average power) were initiated 24h after injury, at energy density of 69Jcm(-1) for 48s, for 5days, to two points of the lesion. Twenty-four hours after the final application, the TA muscle was removed and frozen in liquid nitrogen to assess the general muscle morphology and the gene expression of TNF-, TGF-, MyoD, and Myogenin. The Injured/LLLT group presented a higher number of regenerating fibers and fewer degenerating fibers (P<0.05) without changes in the collagen remodeling. In addition, the Injured/LLLT group presented a significant decrease in the expression of TNF- and myogenin compared to the injured group (P<0.05). The results suggest that the GaAs laser, using a high final energy after cryoinjury, promotes muscle recovery without changing the collagen remodeling in the muscle extracellular matrix.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
TiO2/SnO2 thin films heterostructures were grown by the sol-gel dip-coating technique. It was found that the crystalline structure of TiO2 depends on the annealing temperature and the substrate type. TiO2 films deposited on glass substrate, submitted to thermal annealing until 550 degrees C, present anatase structure, whereas films deposited on quartz substrate transform to rutile structure when thermally annealed at 1100 degrees C. When structured as rutile, this oxide semiconductor has very close lattice parameters to those of SnO2, making easier the heterostructure assembling. The electrical properties of TiO2/SnO2 heterostructure were evaluated as function of temperature and excitation with different light sources. The temperature dependence of conductivity is dominated by a deep level with energy coincident with the second ionization level of oxygen vacancies in SnO2, suggesting the dominant role of the most external layer material (SnO2) to the electrical transport properties. The fourth harmonic of a Nd:YAG laser line (4.65 eV) seems to excite the most external layer whereas a InGaN LED (2.75 eV) seems to excite electrons from the ground state of a quantized interfacial channel as well as intrabandgap states of the TiO2 layer.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Spin coherence generation in an ensemble of negatively charged (In,Ga)As/GaAs quantum dots was investigated by picosecond time-resolved pump-probe spectroscopy measuring ellipticity. Robust coherence of the ground-state electron spins is generated by pumping excited charged exciton (trion) states. The phase of the coherent state, as evidenced by the spin ensemble precession about an external magnetic field, varies relative to spin coherence generation resonant with the ground state. The phase variation depends on the pump photon energy. It is determined by (a) pumping dominantly either singlet or triplet excited states, leading to a phase inversion, and (b) the subsequent carrier relaxation into the ground states. From the dependence of the precession phase and the measured g factors, information about the quantum dot shell splitting and the exchange energy splitting between triplet and singlet states can be extracted in the ensemble.
Resumo:
Semiconductor nanowhiskers (NWs) made of III-V compounds exhibit great potential for technological applications. Controlling the growth conditions, such as temperature and diameter, it is possible to alternate between zinc-blende (ZB) and wurtzite (WZ) crystalline phases, giving origin to the so called polytypism. This effect has great influence in the electronic and optical properties of the system, generating new forms of confinement to the carriers. A theoretical model capable to accurately describe electronic and optical properties in these polytypical nanostructures can be used to study and develop new kinds of nanodevices. In this study, we present the development of a wurtzite/zinc-blende polytypical model to calculate the electronic band structure of nanowhiskers based on group theory concepts and the k.p method. Although the interest is in polytypical superlattices, the proposed model was applied to a single quantum well of InP to study the physics of the wurtzite/zinc-blende polytypism. By the analysis of our results, some trends can be predicted: spatial carriers' separation, predominance of perpendicular polarization (xy plane) in the luminescence spectra, and interband transition blueshifts with strain. Also, a possible range of values for the wurtzite InP spontaneous polarization is suggested. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4767511]