899 resultados para Functionalized surfaces
Resumo:
The spontaneous assembly of a peptide bolaamphiphile in water, namely, RFL4FR (R, arginine; F, phenylalanine; L, leucine) is investigated, along with its novel properties in surface modification and usage as substrates for cell culture. RFL4FR self-assembles into nanosheets through lateral association of the peptide backbone. The L4 sequence is located within the core of the nanosheets, whereas the R moieties are exposed to the water at the surface of the nanosheets. Kinetic assays indicate that the self-assembly is driven by a remarkable two-step process, where a nucleation phase is followed by fast growth of nanosheets with an autocatalysis process. The internal structure of the nanosheets is formed from ultrathin bolaamphiphile monolayers with a crystalline orthorhombic symmetry with cross-β organization. We show that human corneal stromal fibroblast (hCSF) cells can grow on polystyrene films coated with films dried from RFL4FR solutions. For the first time, this type of amphiphilic peptide is used as a substrate to modulate the wettability of solid surfaces for cell culture applications.
Resumo:
Turbulent surface fluxes of momentum and sensible and latent heat as well as surface temperature, air temperature, air humidity, and wind speed were measured by the German Falcon research aircraft over the marginal ice zone (MIZ) of the northern Baltic Sea and the Fram Strait. Applying the bulk formulas and the stability functions to the measurements, the roughness lengths for momentum z0, sensible heat zT, and latent heat zq were calculated. As mean values over a wide range of sea ice conditions, we obtain z0 = 5 � 10�4 m, zT = 1 � 10�8 m, and zq = 1 � 10�7 m. These correspond to the following mean values (± standard deviations) of neutral transfer coefficients reduced to 10 m height, CDN10 = (1.9 ± 0.8) � 10�3, CHN10 = (0.9 ± 0.3) � 10�3, and CEN10 = (1.0 ± 0.2) � 10�3. An average ratio of z0/zT � 104 was observed over the range of 10�6 m < z0 < 10�2 m and differs from previously published results over compact sea ice (10�1 < z0/zT < 103). Other observational results over heterogeneous sea ice do not exist. However, our z0/zT ratio approximately agrees with observations over heterogeneous land surfaces. Flux parameterizations based on commonly used roughness lengths ratios (z0 = zT = zq) overestimate the surface heat fluxes compared to our measurements by more than 100%.
Resumo:
Growing ivy around buildings has benefits. However, ivy potentially damages buildings which limit its use. Options for preventing ivy attachment were investigated to provide ivy management alternatives. Indoor and outdoor experiments were conducted, where metals (Cu, Zn) and anti-graffiti paints were applied to model wall panels. Metal treatments, in both indoor and outdoor experiments, fully prevented ivy attachment. For Hedera helix, silane-based anti-graffiti paint prevented attachment in the laboratory and required under half the peak detachment force necessary to detach the control in the outdoor experiment. In conclusion, metals and silane-based paint are management possibilities for ivy attachment around buildings.
Resumo:
Rainfastness is the ability of agrochemical deposits to resist wash-off by rain and other related environmental phenomena. This work reports laboratory-scale and raintower studies of the rainfastness of fluorescently labeled poly(vinyl alcohol) (PVA) using fluorescent microscopy combined with image analysis. Samples of hydrolyzed PVA exhibit improved rainfastness over a threshold molecular weight, which correlates with PVA film dissolution, swelling, and crystalline properties. It was also established that the rainfastness of PVA scaled with the molecular weight over this threshold. These PVA samples were further characterized in order to determine the effect of the crystallinity on rainfastness. The quantification of rainfastness is of great interest to the field of agrochemical formulation development in order to improve the efficacy of pesticides and their adjuvants.
Resumo:
In the present investigation, a scanning electron microscopy analysis was performed to evaluate the effects of the topical application of ethylenediaminetetraacetic acid (EDTA) gel associated with Cetavlon (EDTAC) in removing the smear layer and exposing collagen fibers following root surface instrumentation. Twenty-eight teeth from adult humans, single rooted and scheduled for extraction due to periodontal reasons, were selected. Each tooth was submitted to manual (scaling and root planing) instrumentation alone or combined with ultrasonic instruments, with or without etching using a 24% EDTAC gel. Following extraction, specimens were processed and examined under a scanning electron microscope. A comparative morphological semi-quantitative analysis was performed; the intensity of the smear layer and the decalcification of cementum and dentinal surfaces were graded in 12 sets using an arbitrary scale ranging from 1 (area covered by a smear layer) to 4 (no smear layer). Root debridement with hand instruments alone or combined with ultrasonic instruments resulted in a similar smear layer covering the root surfaces. The smear layer was successfully removed from the surfaces treated with EDTAC, which exhibited numerous exposed dentinal tubules and collagen fibers. This study supports the hypothesis that manual instrumentation alone or instrumentation combined with ultrasonic instrumentation is unable to remove the smear layer, whereas the subsequent topical application of EDTAC gel effectively removes the smear layer, uncovers dentinal openings and exposes collagen fibers.
Resumo:
Background: Physical and bioceramic incorporation surface treatments at the nanometer scale showed higher means of bone-to-implant contact (BIC) and torque values compared with surface topography at the micrometer scale; however, the literature concerning the effect of nanometer scale parameters is sparse. Purpose: The aim of this study was to evaluate the influence of two different implant surfaces on the percentage bone-to-implant contact (BIC%) and bone osteocyte density in the human posterior maxilla after 2 months of unloaded healing. Materials and Methods: The implants utilized presented dual acid-etched (DAE) surface and a bioceramic molecular impregnated treatment (Ossean(R), Intra-Lock International, Boca Raton, FL, USA) serving as control and test, respectively. Ten subjects (59 1 9 years of age) received two implants (one of each surface) during conventional implant surgery in the posterior maxilla. After the non-loaded period of 2 months, the implants and the surrounding tissue were removed by means of a trephine and were non-decalcified processed for ground sectioning and analysis of BIC%, bone density in threaded area (BA%), and osteocyte index (Oi). Results: Two DAE implants were found to be clinically unstable at time of retrieval. Histometric evaluation showed significantly higher BIC% and Oi for the test compared to the control surface (p < .05), and that BA% was not significantly different between groups. Wilcoxon matched pairs test was used to compare the differences of histomorphometric variables between implant surfaces. The significance test was conducted at a 5% level of significance. Conclusion: The histological data suggest that the bioceramic molecular impregnated surface-treated implants positively modulated bone healing at early implantation times compared to the DAE surface.
Resumo:
Magnetic nanoparticles surface-functionalized with meso-2,3-dimercaptosuccinic acid (MNPs-DMSA) constitute an innovative and promising approach for tissue- and cell-targeted delivery of therapeutic drugs in the lung. Transendothelial migration of leukocytes in the lung is a side effect of endovenous administration of MNPs-DMSA. Using cytologic and phenotypic analysis of murine bronchoalveolar lavage cells, we identified monocytes/macrophages as the main subpopulation of leukocytes involved in this process. Moreover, ultrastructural analysis revealed the presence of nanoparticles inside of numerous macrophages from bronchoalveolar lavage. MNPs-DMSA at concentrations as high as 1 X 10(15) nanoparticles/mL had no toxic effects on macrophages, as evidenced by 3-(4, 5-dimethylthiazolyi-2)-2,5-diphenyltetrazolium bromide (MTT) assay. Notably, MNPs-DMSA up-regulated the mRNA expression of E, L- and P-selectin and macrophage-1 antigen in the murine lung. Upregulation of these cell adhesion molecules was associated with an increased concentration of tumor necrosis factor-alpha in lung. Finally, the critical relevance of the beta(2) integrin-dependent pathway in leukocyte transmigration elicited by MNPs-DMSA was demonstrated by use of knockout mice. Our results characterize mechanisms of the pro-inflammatory effects of MNPs-DMSA in the lung, and identify beta(2) integrin-targeted interventions as promising strategies to reduce pulmonary side effects of MNPs-DMSA during biomedical applications. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Moving-least-squares (MLS) surfaces undergoing large deformations need periodic regeneration of the point set (point-set resampling) so as to keep the point-set density quasi-uniform. Previous work by the authors dealt with algebraic MLS surfaces, and proposed a resampling strategy based on defining the new points at the intersections of the MLS surface with a suitable set of rays. That strategy has very low memory requirements and is easy to parallelize. In this article new resampling strategies with reduced CPU-time cost are explored. The basic idea is to choose as set of rays the lines of a regular, Cartesian grid, and to fully exploit this grid: as data structure for search queries, as spatial structure for traversing the surface in a continuation-like algorithm, and also as approximation grid for an interpolated version of the MLS surface. It is shown that in this way a very simple and compact resampling technique is obtained, which cuts the resampling cost by half with affordable memory requirements.
Resumo:
The representation of interfaces by means of the algebraic moving-least-squares (AMLS) technique is addressed. This technique, in which the interface is represented by an unconnected set of points, is interesting for evolving fluid interfaces since there is]to surface connectivity. The position of the surface points can thus be updated without concerns about the quality of any surface triangulation. We introduce a novel AMLS technique especially designed for evolving-interfaces applications that we denote RAMLS (for Robust AMLS). The main advantages with respect to previous AMLS techniques are: increased robustness, computational efficiency, and being free of user-tuned parameters. Further, we propose a new front-tracking method based on the Lagrangian advection of the unconnected point set that defines the RAMLS surface. We assume that a background Eulerian grid is defined with some grid spacing h. The advection of the point set makes the surface evolve in time. The point cloud can be regenerated at any time (in particular, we regenerate it each time step) by intersecting the gridlines with the evolved surface, which guarantees that the density of points on the surface is always well balanced. The intersection algorithm is essentially a ray-tracing algorithm, well-studied in computer graphics, in which a line (ray) is traced so as to detect all intersections with a surface. Also, the tracing of each gridline is independent and can thus be performed in parallel. Several tests are reported assessing first the accuracy of the proposed RAMLS technique, and then of the front-tracking method based on it. Comparison with previous Eulerian, Lagrangian and hybrid techniques encourage further development of the proposed method for fluid mechanics applications. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
We study properties of finitely determined corank 2 quasihomogeneous map germs f: (C(2), 0) -> (C(3), 0). Examples and counter examples of such map germs are presented.
Resumo:
The electrostatic geodesic mode oscillations are investigated in rotating large aspect ratio tokamak plasmas with circular isothermal magnetic surfaces. The analysis is carried out within the magnetohydrodynamic model including heat flux to compensate for the non-adiabatic pressure distribution along the magnetic surfaces in plasmas with poloidal rotation. Instead of two standard geodesic modes, three geodesic continua are found. The two higher branches of the geodesic modes have a small frequency up-shift from ordinary geodesic acoustic and sonic modes due to rotation. The lower geodesic continuum is a newzonal flowmode (geodesic Doppler mode) in plasmas with mainly poloidal rotation. Limits to standard geodesic modes are found. Bifurcation of Alfven continuum by geodesic modes at the rational surfaces is also discussed. Due to that, the frequency of combined geodesic continuum extends from the poloidal rotation frequency to the ion-sound band that can have an important role in suppressing plasma turbulence.
Resumo:
We have formed and characterized polycrystalline diamond films with surfaces having hydrogen terminations, oxygen terminations, or fluorine terminations, using a small, simple and novel plasma gun to bombard the diamond surface, formed by plasma assisted CVD in a prior step, with ions of the wanted terminating species. The potential differences between surface regions with different terminations were measured by Kelvin Force Microscopy (KFM). The highest potential occurred for oxygen termination regions and the lowest for fluorine. The potential difference between regions with oxygen terminations and hydrogen terminations was about 80 mV, and between regions with hydrogen terminations and fluorine terminations about 150 mV. Regions with different terminations were identified and imaged using the secondary electron signal provided by scanning electron microscopy (SEM). since this signal presents contrast for surfaces with different electrical properties. The wettability of the surfaces with different terminations was evaluated, measuring contact angles. The sample with oxygen termination was the most hydrophilic, with a contact angle of 75 degrees. hydrogen-terminated regions with 83 degrees, and fluorine regions 93 degrees, the most hydrophobic sample. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
We here report the preparation of supported palladium nanoparticles (NPs) stabilized by pendant phosphine groups by reacting a palladium complex containing the ligand 2-(diphenylphosphino)benzaldehyde with an amino-functionalized silica surface The Pd nanocatalyst is active for Suzuki cross-coupling reaction avoiding any addition of other sources of phosphine ligands The Pd intermediates and Pd NPs were characterized by solid-state nuclear magnetic resonance and transmission electron microscopy techniques The synthetic method was also applied to prepare magnetically recoverable Pd NPs leading to a catalyst that could be reused for up to 10 recycles In summary we gathered the advantages of heterogeneous catalysis magnetic separation and enhanced catalytic activity of palladium promoted by phosphine ligands to synthesize a new catalyst for Suzuki cross-coupling reactions The Pd NP catalyst prepared on the phosphine-functionalized support was more active and selective than a similar Pd NP catalyst prepared on an amino-functionalized support (C) 2010 Elsevier Inc All rights reserved
Resumo:
We performed a first-principles investigation on the structural, electronic and optical properties of crystals made of chemically functionalized adamantane molecules. Several molecular building blocks, formed by boron and nitrogen substitutional functionalizations, were considered to build zinc blende and wurtzite crystals, and the resulting structures presented large bulk moduli and cohesive energies, wide and direct bandgaps, and low dielectric constants (low-kappa materials). Those properties provide stability for such structures up to room temperature, superior to those of typical molecular crystals. This indicates a possible road map for crystal engineering using functionalized diamondoids, with potential applications ranging from space filling between conducting wires in nanodevices to nano-electromechanical systems.
Resumo:
Chemically functionalized adamantane molecules have been investigated by first principles total energy calculations. Boron and nitrogen functionalized molecules were found to be very stable, consistent with available experimental data. Two hypothetical molecular crystals, involving functionalized adamantane, were investigated. These molecular crystals presented direct electronic bandgaps and large bulk moduli, which suggested a possible road for molecular self-assembly using functionalized diamondoids. (C) 2010 Elsevier B.V. All rights reserved.