952 resultados para Full-scale Physical Modelling
Resumo:
This paper reports the results of full-scale tests in beam-to-column connections for composite slim floor systems, including tests on Bare Steel connection and composite connection. The tested system consists of a concrete-filled composite column and a composite floor where an asymmetric steel beam is connected to a composite column by shear steel plates. Tests results previously obtained on partially encased composite beams were used to define the position of the headed studs in the slim floor system. Based on the obtained results of connections, the composite and Bare Steel connection behaved as semi-rigid and nominally pinned respectively. The tests results also indicated a significant contribution of the slim floor to the moment capacity of the connection. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
A two-stage bioreactor was operated for a period of 140 days in order to develop a post-treatment process based on anaerobic bioxidation of sulfite. This process was designed for simultaneously treating the effluent and biogas of a full-scale UASB reactor, containing significant concentrations of NH4 and H2S, respectively. The system comprised of two horizontal-flow bed-packed reactors operated with different oxygen concentrations. Ammonium present in the effluent was transformed into nitrates in the first aerobic stage. The second anaerobic stage combined the treatment of nitrates in the liquor with the hydrogen sulfide present in the UASB-reactor biogas. Nitrates were consumed with a significant production of sulfate, resulting in a nitrate removal rate of 0.43 kg N m(3) day(-1) and a parts per thousand yen92 % efficiency. Such a removal rate is comparable to those achieved by heterotrophic denitrifying systems. Polymeric forms of sulfur were not detected (elementary sulfur); sulfate was the main product of the sulfide-based denitrifying process. S-sulfate was produced at a rate of about 0.35 kg m(3) day(-1). Sulfur inputs as S-H2S were estimated at about 0.75 kg m(3) day(-1) and Chemical Oxygen Demand (COD) removal rates did not vary significantly during the process. DGGE profiling and 16S rRNA identified Halothiobacillus-like species as the key microorganism supporting this process; such a strain has not yet been previously associated with such bioengineered systems.
Resumo:
This paper is the first part of an extensive work focusing the technological development of steel fiber reinforced concrete pipes (FRCP). Here is presented and discussed the experimental campaign focusing the test procedure and the mechanical behavior obtained for each of the dosages of fiber used. In the second part ("Steel fiber reinforced concrete pipes. Part 2: Numerical model to simulate the crushing test"), the aspects of FRCP numerical modeling are presented and analyzed using the same experimental results in order to be validated. This study was carried out trying to reduce some uncertainties related to FRCP performance and provide a better condition to the use of these components. In this respect, an experimental study was carried out using sewage concrete pipes in full scale as specimens. The diameter of the specimens was 600 mm, and they had a length of 2500 mm. The pipes were reinforced with traditional bars and different contents of steel fibers in order to compare their performance through the crushing test. Two test procedures were used in that sense. In the 1st Series, the diameter displacement was monitored by the use of two LVDTs positioned at both extremities of the pipes. In the 2nd Series, just one LVDT is positioned at the spigot. The results shown a more rigidity response of the pipe during tests when the displacements were measured at the enlarged section of the socket. The fiber reinforcement was very effective, especially when low level of displacement was imposed to the FRCP. At this condition, the steel fibers showed an equivalent performance to superior class pipes made with traditional reinforced. The fiber content of 40 kg/m3 provided a hardening behavior for the FRCP, and could be considered as equivalent to the critical volume in this condition.
Resumo:
Il presente elaborato è stato finalizzato allo sviluppo di un processo di digestione anaerobica della frazione organica dei rifiuti solidi urbani (FORSU oppure, in lingua inglese OFMSW, Organic Fraction of Municipal Solid Waste) provenienti da raccolta indifferenziata e conseguente produzione di biogas da impiegarsi per il recupero energetico. Questo lavoro rientra nell’ambito di un progetto, cofinanziato dalla Regione Emilia Romagna attraverso il Programma Regionale per la Ricerca Industriale, l’Innovazione e il Trasferimento Tecnologico (PRRIITT), sviluppato dal Dipartimento di Chimica Applicata e Scienza dei Materiali (DICASM) dell’Università di Bologna in collaborazione con la Facoltà di Ingegneria dell’Università di Ferrara e con la società Recupera s.r.l. che applicherà il processo nell’impianto pilota realizzato presso il proprio sito di biostabilizzazione e compostaggio ad Ostellato (FE). L’obiettivo è stato la verifica della possibilità di impiegare la frazione organica dei rifiuti indifferenziati per la produzione di biogas, e in particolare di metano, attraverso un processo di digestione anaerobica previo trattamento chimico oppure in codigestione con altri substrati organici facilmente fermentabili. E’ stata inoltre studiata la possibilità di impiego di reattori con biomassa adesa per migliorare la produzione specifica di metano e diminuire la lag phase. Dalla sperimentazione si può concludere che è possibile giungere allo sviluppo di metano dalla purea codigerendola assieme a refluo zootecnico. Per ottenere però produzioni significative la quantità di solidi volatili apportati dal rifiuto non deve superare il 50% dei solidi volatili complessivi. Viceversa, l’addizione di solfuri alla sola purea si è dimostrata ininfluente nel tentativo di sottrarre gli agenti inibitori della metanogenesi. Inoltre, l’impiego di supporti di riempimento lavorando attraverso processi batch sequenziali permette di eliminare, nei cicli successivi al primo, la lag phase dei batteri metanogeni ed incrementare la produzione specifica di metano.
Resumo:
Slope failure occurs in many areas throughout the world and it becomes an important problem when it interferes with human activity, in which disasters provoke loss of life and property damage. In this research we investigate the slope failure through the centrifuge modeling, where a reduced-scale model, N times smaller than the full-scale (prototype), is used whereas the acceleration is increased by N times (compared with the gravity acceleration) to preserve the stress and the strain behavior. The aims of this research “Centrifuge modeling of sandy slopes” are in extreme synthesis: 1) test the reliability of the centrifuge modeling as a tool to investigate the behavior of a sandy slope failure; 2) understand how the failure mechanism is affected by changing the slope angle and obtain useful information for the design. In order to achieve this scope we arranged the work as follows: Chapter one: centrifuge modeling of slope failure. In this chapter we provide a general view about the context in which we are working on. Basically we explain what is a slope failure, how it happens and which are the tools available to investigate this phenomenon. Afterwards we introduce the technology used to study this topic, that is the geotechnical centrifuge. Chapter two: testing apparatus. In the first section of this chapter we describe all the procedures and facilities used to perform a test in the centrifuge. Then we explain the characteristics of the soil (Nevada sand), like the dry unit weight, water content, relative density, and its strength parameters (c,φ), which have been calculated in laboratory through the triaxial test. Chapter three: centrifuge tests. In this part of the document are presented all the results from the tests done in centrifuge. When we talk about results we refer to the acceleration at failure for each model tested and its failure surface. In our case study we tested models with the same soil and geometric characteristics but different angles. The angles tested in this research were: 60°, 75° and 90°. Chapter four: slope stability analysis. We introduce the features and the concept of the software: ReSSA (2.0). This software allows us to calculate the theoretical failure surfaces of the prototypes. Then we show in this section the comparisons between the experimental failure surfaces of the prototype, traced in the laboratory, and the one calculated by the software. Chapter five: conclusion. The conclusion of the research presents the results obtained in relation to the two main aims, mentioned above.
Resumo:
Programa de doctorado en Oceanografía. La fecha de publicación es la fecha de lectura
Resumo:
This artwork reports on two different projects that were carried out during the three years of Doctor of the Philosophy course. In the first years a project regarding Capacitive Pressure Sensors Array for Aerodynamic Applications was developed in the Applied Aerodynamic research team of the Second Faculty of Engineering, University of Bologna, Forlì, Italy, and in collaboration with the ARCES laboratories of the same university. Capacitive pressure sensors were designed and fabricated, investigating theoretically and experimentally the sensor’s mechanical and electrical behaviours by means of finite elements method simulations and by means of wind tunnel tests. During the design phase, the sensor figures of merit are considered and evaluated for specific aerodynamic applications. The aim of this work is the production of low cost MEMS-alternative devices suitable for a sensor network to be implemented in air data system. The last two year was dedicated to a project regarding Wireless Pressure Sensor Network for Nautical Applications. Aim of the developed sensor network is to sense the weak pressure field acting on the sail plan of a full batten sail by means of instrumented battens, providing a real time differential pressure map over the entire sail surface. The wireless sensor network and the sensing unit were designed, fabricated and tested in the faculty laboratories. A static non-linear coupled mechanical-electrostatic simulation, has been developed to predict the pressure versus capacitance static characteristic suitable for the transduction process and to tune the geometry of the transducer to reach the required resolution, sensitivity and time response in the appropriate full scale pressure input A time dependent viscoelastic error model has been inferred and developed by means of experimental data in order to model, predict and reduce the inaccuracy bound due to the viscolelastic phenomena affecting the Mylar® polyester film used for the sensor diaphragm. The development of the two above mentioned subjects are strictly related but presently separately in this artwork.
Resumo:
A new conversion structure for three-phase grid-connected photovoltaic (PV) generation plants is presented and discussed in this Thesis. The conversion scheme is based on two insulated PV arrays, each one feeding the dc bus of a standard 2-level three-phase voltage source inverter (VSI). Inverters are connected to the grid by a traditional three-phase transformer having open-end windings at inverters side and either star or delta connection at the grid side. The resulting conversion structure is able to perform as a multilevel VSI, equivalent to a 3-level inverter, doubling the power capability of a single VSI with given voltage and current ratings. Different modulation schemes able to generate proper multilevel voltage waveforms have been discussed and compared. They include known algorithms, some their developments, and new original approaches. The goal was to share the grid power with a given ratio between the two VSI within each cycle period of the PWM, being the PWM pattern suitable for the implementation in industrial DSPs. It has been shown that an extension of the modulation methods for standard two-level inverter can provide a elegant solution for dual two-level inverter. An original control method has been introduced to regulate the dc-link voltages of each VSI, according to the voltage reference given by a single MPPT controller. A particular MPPT algorithm has been successfully tested, based on the comparison of the operating points of the two PV arrays. The small deliberately introduced difference between two operating dc voltages leads towards the MPP in a fast and accurate manner. Either simulation or experimental tests, or even both, always accompanied theoretical developments. For the simulation, the Simulink tool of Matlab has been adopted, whereas the experiments have been carried out by a full-scale low-voltage prototype of the whole PV generation system. All the research work was done at the Lab of the Department of Electrical Engineering, University of Bologna.
Resumo:
In this thesis is studied the long-term behaviour of steel reinforced slabs paying particular attention to the effects due to shrinkage and creep. Despite the universal popularity of using this kind of slabs for simply construction floors, the major world codes focus their attention in a design based on the ultimate limit state, restraining the exercise limit state to a simply verification after the design. For Australia, on the contrary, this is not true. In fact, since this country is not subjected to seismic effects, the main concern is related to the long-term behaviour of the structure. Even if there are a lot of studies about long-term effects of shrinkage and creep, up to date, there are not so many studies concerning the behaviour of slabs with a cracked cross section and how shrinkage and creep influence it. For this reason, a series of ten full scale reinforced slabs was prepared and monitored under laboratory conditions to investigate this behaviour. A wide range of situations is studied in order to cover as many cases as possible, as for example the use of a fog room able to reproduce an environment of 100% humidity. The results show how there is a huge difference in terms of deflections between the case of slabs which are subjected to both shrinkage and creep effects soon after the partial cracking of the cross section, and the case of slabs which have already experienced shrinkage effects for several weeks, when the section has not still cracked, and creep effects only after the cracking.
Resumo:
Among the experimental methods commonly used to define the behaviour of a full scale system, dynamic tests are the most complete and efficient procedures. A dynamic test is an experimental process, which would define a set of characteristic parameters of the dynamic behaviour of the system, such as natural frequencies of the structure, mode shapes and the corresponding modal damping values associated. An assessment of these modal characteristics can be used both to verify the theoretical assumptions of the project, to monitor the performance of the structural system during its operational use. The thesis is structured in the following chapters: The first introductive chapter recalls some basic notions of dynamics of structure, focusing the discussion on the problem of systems with multiply degrees of freedom (MDOF), which can represent a generic real system under study, when it is excited with harmonic force or in free vibration. The second chapter is entirely centred on to the problem of dynamic identification process of a structure, if it is subjected to an experimental test in forced vibrations. It first describes the construction of FRF through classical FFT of the recorded signal. A different method, also in the frequency domain, is subsequently introduced; it allows accurately to compute the FRF using the geometric characteristics of the ellipse that represents the direct input-output comparison. The two methods are compared and then the attention is focused on some advantages of the proposed methodology. The third chapter focuses on the study of real structures when they are subjected to experimental test, where the force is not known, like in an ambient or impact test. In this analysis we decided to use the CWT, which allows a simultaneous investigation in the time and frequency domain of a generic signal x(t). The CWT is first introduced to process free oscillations, with excellent results both in terms of frequencies, dampings and vibration modes. The application in the case of ambient vibrations defines accurate modal parameters of the system, although on the damping some important observations should be made. The fourth chapter is still on the problem of post processing data acquired after a vibration test, but this time through the application of discrete wavelet transform (DWT). In the first part the results obtained by the DWT are compared with those obtained by the application of CWT. Particular attention is given to the use of DWT as a tool for filtering the recorded signal, in fact in case of ambient vibrations the signals are often affected by the presence of a significant level of noise. The fifth chapter focuses on another important aspect of the identification process: the model updating. In this chapter, starting from the modal parameters obtained from some environmental vibration tests, performed by the University of Porto in 2008 and the University of Sheffild on the Humber Bridge in England, a FE model of the bridge is defined, in order to define what type of model is able to capture more accurately the real dynamic behaviour of the bridge. The sixth chapter outlines the necessary conclusions of the presented research. They concern the application of a method in the frequency domain in order to evaluate the modal parameters of a structure and its advantages, the advantages in applying a procedure based on the use of wavelet transforms in the process of identification in tests with unknown input and finally the problem of 3D modeling of systems with many degrees of freedom and with different types of uncertainty.
Resumo:
As land is developed, the impervious surfaces that are created increase the amount of runoff during rainfall events, disrupting the natural hydrologic cycle, with an increment in volume of runoff and in pollutant loadings. Pollutants deposited or derived from an activity on the land surface will likely end up in stormwater runoff in some concentration, such as nutrients, sediment, heavy metals, hydrocarbons, gasoline additives, pathogens, deicers, herbicides and pesticides. Several of these pollutants are particulate-bound, so it appears clear that sediment removal can provide significant water-quality improvements and it appears to be important the knowledge of the ability of stromwater treatment devices to retain particulate matter. For this reason three different units which remove sediments have been tested through laboratory. In particular a roadside gully pot has been tested under steady hydraulic conditions, varying the characteristics of the influent solids (diameter, particle size distribution and specific gravity). The efficiency in terms of particles retained has been evaluated as a function of influent flow rate and particles characteristics; results have been compared to efficiency evaluated applying an overflow rate model. Furthermore the role of particles settling velocity in efficiency determination has been investigated. After the experimental runs on the gully pot, a standard full-scale model of an hydrodynamic separator (HS) has been tested under unsteady influent flow rate condition, and constant solid concentration at the input. The results presented in this study illustrate that particle separation efficiency of the unit is predominately influenced by operating flow rate, which strongly affects the particles and hydraulic residence time of the system. The efficiency data have been compared to results obtained from a modified overflow rate model; moreover the residence time distribution has been experimentally determined through tracer analyses for several steady flow rates. Finally three testing experiments have been performed for two different configurations of a full-scale model of a clarifier (linear and crenulated) under unsteady influent flow rate condition, and constant solid concentration at the input. The results illustrate that particle separation efficiency of the unit is predominately influenced by the configuration of the unit itself. Turbidity measures have been used to compare turbidity with the suspended sediments concentration, in order to find a correlation between these two values, which can allow to have a measure of the sediments concentration simply installing a turbidity probe.
Resumo:
The research activities described in the present thesis have been oriented to the design and development of components and technological processes aimed at optimizing the performance of plasma sources in advanced in material treatments. Consumables components for high definition plasma arc cutting (PAC) torches were studied and developed. Experimental activities have in particular focussed on the modifications of the emissive insert with respect to the standard electrode configuration, which comprises a press fit hafnium insert in a copper body holder, to improve its durability. Based on a deep analysis of both the scientific and patent literature, different solutions were proposed and tested. First, the behaviour of Hf cathodes when operating at high current levels (250A) in oxidizing atmosphere has been experimentally investigated optimizing, with respect to expected service life, the initial shape of the electrode emissive surface. Moreover, the microstructural modifications of the Hf insert in PAC electrodes were experimentally investigated during first cycles, in order to understand those phenomena occurring on and under the Hf emissive surface and involved in the electrode erosion process. Thereafter, the research activity focussed on producing, characterizing and testing prototypes of composite inserts, combining powders of a high thermal conductibility (Cu, Ag) and high thermionic emissivity (Hf, Zr) materials The complexity of the thermal plasma torch environment required and integrated approach also involving physical modelling. Accordingly, a detailed line-by-line method was developed to compute the net emission coefficient of Ar plasmas at temperatures ranging from 3000 K to 25000 K and pressure ranging from 50 kPa to 200 kPa, for optically thin and partially autoabsorbed plasmas. Finally, prototypal electrodes were studied and realized for a newly developed plasma source, based on the plasma needle concept and devoted to the generation of atmospheric pressure non-thermal plasmas for biomedical applications.
Resumo:
Questa tesi si pone come obiettivo l'analisi delle componenti di sollecitazione statica di un serbatoio, in acciaio API 5L X52, sottoposto a carichi di flessione e pressione interna attraverso il programma agli elementi finiti PLCd4, sviluppato presso l'International Center for Numerical Methods in Engineering (CIMNE - Barcelona). Questo tipo di analisi rientra nel progetto europeo ULCF, il cui traguardo è lo studio della fatica a bassissimo numero di cicli per strutture in acciaio. Prima di osservare la struttura completa del serbatoio è stato studiato il comportamento del materiale per implementare all'interno del programma una nuova tipologia di curva che rappresentasse al meglio l'andamento delle tensioni interne. Attraverso il lavoro di preparazione alla tesi è stato inserito all'interno del programma un algoritmo per la distribuzione delle pressioni superficiali sui corpi 3D, successivamente utilizzato per l'analisi della pressione interna nel serbatoio. Sono state effettuate analisi FEM del serbatoio in diverse configurazioni di carico ove si è cercato di modellare al meglio la struttura portante relativa al caso reale di "full scale test". Dal punto di vista analitico i risultati ottenuti sono soddisfacenti in quanto rispecchiano un corretto comportamento del serbatoio in condizioni di pressioni molto elevate e confermano la bontà del programma nell'analisi computazionale.
Resumo:
Environmental decay in porous masonry materials, such as brick and mortar, is a widespread problem concerning both new and historic masonry structures. The decay mechanisms are quite complex dependng upon several interconnected parameters and from the interaction with the specific micro-climate. Materials undergo aesthetical and substantial changes in character but while many studies have been carried out, the mechanical aspect has been largely understudied while it bears true importance from the structural viewpoint. A quantitative assessment of the masonry material degradation and how it affects the load-bearing capacity of masonry structures appears missing. The research work carried out, limiting the attention to brick masonry addresses this issue through an experimental laboratory approach via different integrated testing procedures, both non-destructive and mechanical, together with monitoring methods. Attention was focused on transport of moisture and salts and on the damaging effects caused by the crystallization of two different salts, sodium chloride and sodium sulphate. Many series of masonry specimens, very different in size and purposes were used to track the damage process since its beginning and to monitor its evolution over a number of years Athe same time suitable testing techniques, non-destructive, mini-invasive, analytical, of monitoring, were validated for these purposes. The specimens were exposed to different aggressive agents (in terms of type of salt, of brine concentration, of artificial vs. open-air natural ageing, …), tested by different means (qualitative vs. quantitative, non destructive vs. mechanical testing, punctual vs. wide areas, …), and had different size (1-, 2-, 3-header thick walls, full-scale walls vs. small size specimens, brick columns and triplets vs. small walls, masonry specimens vs. single units of brick and mortar prisms, …). Different advanced testing methods and novel monitoring techniques were applied in an integrated holistic approach, for quantitative assessment of masonry health state.
Resumo:
The EBPR (Enhanced Biological Phosphorus Removal) is a type of secondary treatment in WWTPs (WasteWater Treatment Plants), quite largely used in full-scale plants worldwide. The phosphorus occurring in aquatic systems in high amounts can cause eutrophication and consequently the death of fauna and flora. A specific biomass is used in order to remove the phosphorus, the so-called PAOs (Polyphosphate Accumulating Organisms) that accumulate the phosphorus in form of polyphosphate in their cells. Some of these organisms, the so-called DPAO (Denitrifying Polyphosphate Accumulating Organisms) use as electron acceptor the nitrate or nitrite, contributing in this way also to the removal of these compounds from the wastewater, but there could be side reactions leading to the formation of nitrous oxides. The aim of this project was to simulate in laboratory scale a EBPR, acclimatizing and enriching the specialized biomass. Two bioreactors were operated as Sequencing Batch Reactors, one enriched in Accumulibacter, the other in Tetrasphaera (both PAOs): Tetrasphaera microorganisms are able to uptake aminoacids as carbon source, Accumulibacter uptake organic carbon (volatile fatty acids, VFA). In order to measure the removal of COD, phosphorus and nitrogen-derivate compounds, different analysis were performed: spectrophotometric measure of phosphorus, nitrate, nitrite and ammonia concentrations, TOC (Total Organic Carbon, measuring the carbon consumption), VFA via HPLC (High Performance Liquid Chromatography), total and volatile suspended solids following standard methods APHA, qualitative microorganism population via FISH (Fluorescence In Situ Hybridization). Batch test were also performed to monitor the NOx production. Both specialized populations accumulated as a result of SBR operations; however, Accumulibacter were found to uptake phosphates at higher extents. Both populations were able to remove efficiently nitrates and organic compounds occurring in the feeding. The experimental work was carried out at FCT of Universidade Nova de Lisboa (FCT-UNL) from February to July 2014.