910 resultados para Fuels.
Resumo:
Biorefineries, producing fuels, green chemicals and bio-products, offer great potential for improving the profitability and sustainability of tropical agricultural industries. Biomass from tropical crops like sugarcane, sweet sorghum, palm and cassava offer great potential because of the high biomass growth potential under favourable climatic conditions. Biorefineries aim to convert waste residues through biochemical and enzymatic processes to low cost fermentable sugars which are a platform for value-adding. Through subsequent fermentation utilising microbial biotechnologies or chemical synthesis, the sugars can be converted to fuels including ethanol and butanol, oils, organic acids such as lactic and levulinic acid and polymer precursors. Other biorefinery products can include food and animal feeds, plastics, fibre products and resins. Pretreatment technologies are a key to unlocking this potential and new technologies are emerging. This paper will address the opportunities available for tropical biorefineries to contribute to the future profitability of tropical agricultural industries. The importance of pretreatment technologies will be discussed.
Resumo:
Biorefineries, co-producing fuels, green chemicals and bio-products, offer great potential for enhancing agricultural value, and developing new industries in the bioeconomy. Biomass biorefineries aim to convert agricultural crops and wastes through biochemical and enzymatic processes to low cost fermentable sugars and other products which are platforms for value-adding. Through subsequent fermentation or chemical synthesis, the bio-based platforms can be converted to fuels including ethanol and butanol, oils, organic acids such as lactic and levulinic acid and polymer precursors. Other biorefinery products can include food and animal feeds, plastics, fibre products and resins. In 2014, QUT commissioned a study from Deloitte Access Economics and Correlli Consulting to assess the potential future economic value of tropical biorefineries to Queensland. This paper will report on the outcomes of this study and address the opportunities available for tropical biorefineries to contribute to the future profitability and sustainability of tropical agricultural industries in Queensland and more broadly across northern Australia.
Resumo:
This paper is a condensed version of the final report of a detailed field study of rural energy consumption patterns in six villages located west of Bangalore in the dry belt of Karnataka State in India. The study was carried out in two phases; first, a pilot study of four villages and second, the detailed study of six villages, the populations of which varied from around 350 to about 950. The pilot survey ended in late 1976, and most of the data was collected for the main project in 1977. Processing of the collected data was completed in 1980. The aim was to carry out a census survey, rather than a sample study. Hence, considerable effort was expended in production of both a suitable questionnaire, ensuring that all respondents were contacted, and devising methods which would accurately reflect the actual energy use in various energy-utilising activities. In the end, 560 households out of 578 (97%) were surveyed. The following ranking was found for the various energy sources in order of average percentage contribution to the annual total energy requirement: firewood, 81A·6%; human energy, 7A·7%; animal energy, 2A·7%; kerosene, 2A·1%; electricity, 0A·6% and all other sources (rice husks, agro-wastes, coal and diesel fuel), 5A·3%. In other words commercial fuels made only a small contribution to the overall energy use. It should be noted that dung cakes are not burned in this region. The average energy use pattern, sector by sector, again on a percentage basis, was as follows: domestic, 88A·3%; industry, 4A·7%; agriculture, 4A·3%; lighting, 2A·2% and transport, 0A·5%. The total annual per capita energy consumption was 12A·6 A± 1A·2 GJ, giving an average annual household consumption of around 78A·6 GJ.
Resumo:
The objectives of this study were to analyze the impact of structural stand characteristics on ignition potential, surface fuel moisture, and fire behavior in Pinus sylvestris L. and Picea abies (L.) Karst stands in Finland and to explain stand-specific fire danger using the Canadian Fire Weather Index System and the Finnish Fire Risk Index. Additionally, the study analyzes the relationship between observed fire activity and fire weather indices at different stages of growing season. Field experiments were carried out in Pinus sylvestris or Picea abies dominated stands during fire seasons 2001 and 2002. Observations on ignition potential, fuel moisture, and fire behavior were analyzed in relation to stand structure and the outputs of the Finnish and Canadian fire weather indices. Seasonal patterns of fire activity were examined based on national fire statistics 1996 2003, effective temperature sum, and the fire weather indices. Point fire ignition potential was highest in Pinus clear-cuts and lowest in closed Picea stands. Moss-dominated surface fuels were driest in clear-cut and sapling stage stands and presented the highest moisture content under closed Picea canopy. Pinus sylvestris stands carried fire under a wide range of fire weather conditions under which Picea abies stands failed to sustain fire. In the national fire records, the daily number of reported ignitions presented its highest value during late fire season whereas the daily area burned peaked most substantially during early season. The fire weather indices correlated significantly with ignition potential and fuel moisture but were unable to explain fire behavior in the experimental fires. During the initial and final stages of the growing season, fire activity was disconnected from weather-based fire danger ratings. Information on stand structure and season stage would benefit the assessment of fire danger in Finnish forest landscape for fire suppression and controlled burning purposes.
Resumo:
Wildfire represents a major risk to pine plantations. This risk is particularly great for young plantations (generally less than 10 m in height) where prescribed fire cannot be used to manipulate fuel biomass, and where flammable grasses are abundant in the understorey. We report results from a replicated field experiment designed to determine the effects of two rates of glyphosate (450 g L–1) application, two extents of application (inter-row only and inter-row and row) with applications being applied once or twice, on understorey fine fuel biomass, fuel structure and composition in south-east Queensland, Australia. Two herbicide applications (~9 months apart) were more effective than a once-off treatment for reducing standing biomass, grass continuity, grass height, percentage grass dry weight and the density of shrubs. In addition, the 6-L ha–1 rate of application was more effective than the 3-L ha–1 rate of application in periodically reducing grass continuity and shrub density in the inter-rows and in reducing standing biomass in the tree rows, and application in the inter-rows and rows significantly reduced shrub density relative to the inter-row-only application. Herbicide treatment in the inter-rows and rows is likely to be useful for managing fuels before prescribed fire in young pine plantations because such treatment minimised tree scorch height during prescribed burns. Further, herbicide treatments had no adverse effects on plantation trees, and in some cases tree growth was enhanced by treatments. However, the effectiveness of herbicide treatments in reducing the risk of tree damage or mortality under wildfire conditions remains untested.
Resumo:
The world is facing an energy crisis due to exponential population growth and limited availability of fossil fuels. Over the last 20 years, carbon, one of the most abundant materials found on earth, and its allotrope forms such as fullerenes, carbon nanotubes and graphene have been proposed as sources of energy generation and storage because of their extraordinary properties and ease of production. Various approaches for the synthesis and incorporation of carbon nanomaterials in organic photovoltaics and supercapacitors have been reviewed and discussed in this work, highlighting their benefits as compared to other materials commonly used in these devices. The use of fullerenes, carbon nanotubes and graphene in organic photovoltaics and supercapacitors is described in detail, explaining how their remarkable properties can enhance the efficiency of solar cells and energy storage in supercapacitors. Fullerenes, carbon nanotubes and graphene have all been included in solar cells with interesting results, although a number of problems are still to be overcome in order to achieve high efficiency and stability. However, the flexibility and the low cost of these materials provide the opportunity for many applications such as wearable and disposable electronics or mobile charging. The application of carbon nanotubes and graphene to supercapacitors is also discussed and reviewed in this work. Carbon nanotubes, in combination with graphene, can create a more porous film with extraordinary capacitive performance, paving the way to many practical applications from mobile phones to electric cars. In conclusion, we show that carbon nanomaterials, developed by inexpensive synthesis and process methods such as printing and roll-to-roll techniques, are ideal for the development of flexible devices for energy generation and storage – the key to the portable electronics of the future.
Resumo:
Correlations between oil and agricultural commodities have varied over previous decades, impacted by renewable fuels policy and turbulent economic conditions. We estimate smooth transition conditional correlation models for 12 agricultural commodities and WTI crude oil. While a structural change in correlations occurred concurrently with the introduction of biofuel policy, oil and food price levels are also key influences. High correlation between biofuel feedstocks and oil is more likely to occur when food and oil price levels are high. Correlation with oil returns is strong for biofuel feedstocks, unlike with other agricultural futures, suggesting limited contagion from energy to food markets.
Resumo:
Recent epidemiological studies have shown a consistent association of the mass concentration of urban air thoracic (PM10) and fine (PM2.5) particles with mortality and morbidity among cardiorespiratory patients. However, the chemical characteristics of different particulate size ranges and the biological mechanisms responsible for these adverse health effects are not well known. The principal aims of this thesis were to validate a high volume cascade impactor (HVCI) for the collection of particulate matter for physicochemical and toxicological studies, and to make an in-depth chemical and source characterisation of samples collected during different pollution situations. The particulate samples were collected with the HVCI, virtual impactors and a Berner low pressure impactor in six European cities: Helsinki, Duisburg, Prague, Amsterdam, Barcelona and Athens. The samples were analysed for particle mass, common ions, total and water-soluble elements as well as elemental and organic carbon. Laboratory calibration and field comparisons indicated that the HVCI can provide a unique large capacity, high efficiency sampling of size-segregated aerosol particles. The cutoff sizes of the recommended HVCI configuration were 2.4, 0.9 and 0.2 μm. The HVCI mass concentrations were in a good agreement with the reference methods, but the chemical composition of especially the fine particulate samples showed some differences. This implies that the chemical characterization of the exposure variable in toxicological studies needs to be done from the same HVCI samples as used in cell and animal studies. The data from parallel, low volume reference samplers provide valuable additional information for chemical mass closure and source assessment. The major components of PM2.5 in the virtual impactor samples were carbonaceous compounds, secondary inorganic ions and sea salt, whereas those of coarse particles (PM2.5-10) were soil-derived compounds, carbonaceous compounds, sea salt and nitrate. The major and minor components together accounted for 77-106% and 77-96% of the gravimetrically-measured masses of fine and coarse particles, respectively. Relatively large differences between sampling campaigns were observed in the organic carbon content of the PM2.5 samples as well as the mineral composition of the PM2.5-10 samples. A source assessment based on chemical tracers suggested clear differences in the dominant sources (e.g. traffic, residential heating with solid fuels, metal industry plants, regional or long-range transport) between the sampling campaigns. In summary, the field campaigns exhibited different profiles with regard to particulate sources, size distribution and chemical composition, thus, providing a highly useful setup for toxicological studies on the size-segregated HVCI samples.
Resumo:
In recent years, concern has arisen over the effects of increasing carbon dioxide (CO2) in the earth's atmosphere due to the burning of fossil fuels. One way to mitigate increase in atmospheric CO2 concentration and climate change is carbon sequestration to forest vegeta-tion through photosynthesis. Comparable regional scale estimates for the carbon balance of forests are therefore needed for scientific and political purposes. The aim of the present dissertation was to improve methods for quantifying and verifying inventory-based carbon pool estimates of the boreal forests in the mineral soils. Ongoing forest inventories provide a data based on statistically sounded sampling for estimating the level of carbon stocks and stock changes, but improved modelling tools and comparison of methods are still needed. In this dissertation, the entire inventory-based large-scale forest carbon stock assessment method was presented together with some separate methods for enhancing and comparing it. The enhancement methods presented here include ways to quantify the biomass of understorey vegetation as well as to estimate the litter production of needles and branches. In addition, the optical remote sensing method illustrated in this dis-sertation can be used to compare with independent data. The forest inventory-based large-scale carbon stock assessment method demonstrated here provided reliable carbon estimates when compared with independent data. Future ac-tivity to improve the accuracy of this method could consist of reducing the uncertainties regarding belowground biomass and litter production as well as the soil compartment. The methods developed will serve the needs for UNFCCC reporting and the reporting under the Kyoto Protocol. This method is principally intended for analysts or planners interested in quantifying carbon over extensive forest areas.
Resumo:
High-throughput techniques are necessary to efficiently screen potential lignocellulosic feedstocks for the production of renewable fuels, chemicals, and bio-based materials, thereby reducing experimental time and expense while supplanting tedious, destructive methods. The ratio of lignin syringyl (S) to guaiacyl (G) monomers has been routinely quantified as a way to probe biomass recalcitrance. Mid-infrared and Raman spectroscopy have been demonstrated to produce robust partial least squares models for the prediction of lignin S/G ratios in a diverse group of Acacia and eucalypt trees. The most accurate Raman model has now been used to predict the S/G ratio from 269 unknown Acacia and eucalypt feedstocks. This study demonstrates the application of a partial least squares model composed of Raman spectral data and lignin S/G ratios measured using pyrolysis/molecular beam mass spectrometry (pyMBMS) for the prediction of S/G ratios in an unknown data set. The predicted S/G ratios calculated by the model were averaged according to plant species, and the means were not found to differ from the pyMBMS ratios when evaluating the mean values of each method within the 95 % confidence interval. Pairwise comparisons within each data set were employed to assess statistical differences between each biomass species. While some pairwise appraisals failed to differentiate between species, Acacias, in both data sets, clearly display significant differences in their S/G composition which distinguish them from eucalypts. This research shows the power of using Raman spectroscopy to supplant tedious, destructive methods for the evaluation of the lignin S/G ratio of diverse plant biomass materials.
Resumo:
Single pulse shock tube facility has been developed in the High Temperature Chemical Kinetics Lab, Aerospace Engineering Department, to carry out ignition delay studies and spectroscopic investigations of hydrocarbon fuels. Our main emphasis is on measuring ignition delay through pressure rise and by monitoring CH emission for various jet fuels and finding suitable additives for reducing the delay. Initially the shock tube was tested and calibrated by measuring the ignition delay of C2H6-O2 mixture. The results are in good agreement with earlier published works. Ignition times of exo-tetrahdyrodicyclopentadiene (C10H16), which is a leading candidate fuel for scramjet propulsion has been studied in the reflected shock region in the temperature range 1250 - 1750 K with and without adding Triethylamine (TEA). Addition of TEA results in substantial reduction of ignition delay of C10H16.
Resumo:
This paper investigates the short-run effects of economic growth on carbon dioxide emissions from the combustion of fossil fuels and the manufacture of cement for 189 countries over the period 1961-2010. Contrary to what has previously been reported, we conclude that there is no strong evidence that the emissions-income elasticity is larger during individual years of economic expansion as compared to recession. Significant evidence of asymmetry emerges when effects over longer periods are considered. We find that economic growth tends to increase emissions not only in the same year, but also in subsequent years. Delayed effects - especially noticeable in the road transport sector - mean that emissions tend to grow more quickly after booms and more slowly after recessions. Emissions are more sensitive to fluctuations in industrial value added than agricultural value added, with services being an intermediate case. On the expenditure side, growth in consumption and growth in investment have similar implications for national emissions. External shocks have a relatively large emissions impact, and the short-run emissions-income elasticity does not appear to decline as incomes increase. Economic growth and emissions have been more tightly linked in fossil-fuel rich countries.
Resumo:
This paper examines the possibilities for interfuel substitution in Australia in view of the need to shift towards a cleaner mix of fuels and technologies to meet future energy demand and environmental goals. The translog cost function is estimated for the aggregate economy, the manufacturing sector and its subsectors, and the electricity generation subsector. The advantages of this work over previous literature relating to the Australian case are that it uses relatively recent data, focuses on energy-intensive subsectors and estimates the Morishima elasticities of substitution. The empirical evidence shown herein indicates weak-form substitutability between different energy types, and higher possibilities for substitution at lower levels of aggregation, compared with the aggregate economy. For the electricity generation subsector, which is at the centre of the CO2 emissions problem in Australia, significant but weak substitutability exists between coal and gas when the price of coal changes. A higher substitution possibility exists between coal and oil in this subsector. The evidence for the own- and cross-price elasticities, together with the results for fuel efficiencies, indicates that a large increase in relative prices could be justified to further stimulate the market for low-emission technologies.
Resumo:
The importance of the study of thermal degradation of polymeric fuels arises from their role in the combustion of solid propellants. Estimation of the condensed-phase heat release during combustion can be facilitated by the knowledge of the enthalpy change associated with the polymer degradation process. Differential scanning calorimetry has been used to obtain enthalpy data. Kinetic studies on the polymeric degradation process have been carried out with the following objectives. The literature values of activation energies are quite diverse and differ from author to author. The present study has tried to locate possible reasons for the divergence in the reported activation energy values. A value of 30 kcal has been obtained and found to be independent of the technique employed. The present data on the kinetics support to chain-end initiation and unzipping process. The activation energies are further found to be independent of the atmosphere in which the degradation of polymer fuel is carried out. The degradation in air, N2, and O2 all yield a value of 30 kcal/mole for the activation energies.
Resumo:
Regional autonomy in Indonesia was initially introduced as a means of pacifying regional disappointment at the central government. Not only did the Regional Autonomy Law of 1999 give the Balinese a chance to express grievance regarding the centralist policies of the Jakarta government but also provided an opportunity to return to the regional, exclusive, traditional village governance (desa adat). As a result, the problems faced by the island, particularly ethnic conflicts, are increasingly handled by the mechanism of this traditional type of governance. Traditional village governance with regard to ethnic conflicts (occurring) between Balinese and migrants has never been systematically analyzed. Existing analyses emphasized only the social context, but do not explain either the cause of conflicts and the ensuing problems entails or the virtues of traditional village governance mechanisms for mediating in the conflict. While some accounts provide snapshots, they lack both theoretical and conflict study perspective. The primary aim of this dissertation is to explore the expression and the causes of conflict between the Balinese and migrants and to advance the potential of traditional village governance as a means of conflict resolution with particular reference to the municipality of Denpasar. One conclusion of the study is that the conflict between the Balinese and migrants has been expressed on the level of situation/contradiction, attitudes, and behavior. Yet the driving forces behind the conflict itself consist of the following factors: absence of cooperation; incompatible position and perception; inability to communicate effectively; and problem of inequality and injustice, which comes to the surface as a social, cultural, and economic problem. This complex of factors fuels collective fear for the future of both groups. The study concludes that traditional village governance mechanisms as a means of conflict resolution have not yet been able to provide an enduring resolution for the conflict. Analysis shows that the practice of traditional village governance is unable to provide satisfactory mechanisms for the conflict as prescribed by conflict resolution theory. Traditional village governance, which is derived from the exclusive Hindu-Balinese culture, is accepted as more legitimate among the Balinese than the official governance policies. However, it is not generally accepted by most of the Muslim migrants. In addition, traditional village governance lacks access to economic instruments, which weakens its capacity to tackle the economic roots of the conflict. Thus the traditional mechanisms of migrant ordinance , as practiced by the traditional village governance have not yet been successful in penetrating all aspects of the conflict. Finally, one of the main challenges for traditional village governance s legal development is the creation of a regional legal system capable of accommodating rapid changes in line with the national and international legal practices. The framing of the new laws should be responsive to the aspirations of a changing society. It should not only protect the various Balinese communities interests, but also that of other ethnic groups, especially those of the minority. In other words, the main challenge to traditional village governance is its ability to develop flexibility and inclusiveness.