993 resultados para Frequency features
Resumo:
We investigate the influence of a single-mode cavity on the Autler-Townes doublet that arises when a three-level atom is strongly driven by a laser field tuned to one of the atomic transitions and probed by a tunable, weak field coupled to the other transition. We assume that the cavity mode is coupled to the driven transition and the cavity and laser frequencies are equal to the atomic transition frequency. We find that the Autler-Townes spectrum can have one, two or three peaks depending on the relative magnitudes of the Rabi frequencies of the cavity and driving fields. We show that, in order to understand the three-peaked spectrum, it is necessary to go beyond the secular approximation, leading to interesting quantum interference effects. We find that the positions and relative intensities of the three spectral components are affected strongly by the atom-cavity coupling strength g and the cavity damping K. For an increasing g and/or decreasing K the triplet evolves into a single peak. This results in 'undressing' of the system such that the atom collapses into its ground state. We interpret the spectral features in terms of the semiclassical dressed-atom model, and also provide complementary views of the cavity effects in terms of quantum Langevin equations and the fully quantized, 'double -dressing' model.
Resumo:
The technique of permanently attaching interdigital transducers (IDT) to either flat or curved structural surfaces to excite single Lamb wave mode has demonstrated great potential for quantitative non-destructive evaluation and smart materials design, In this paper, the acoustic wave field in a composite laminated plate excited by an IDT is investigated. On the basis of discrete layer theory and a multiple integral transform method, an analytical-numerical approach is developed to evaluate the surface velocity response of the plate due to the IDTs excitation. In this approach, the frequency spectrum and wave number spectrum of the output of IDT are obtained directly. The corresponding time domain results are calculated by applying a standard inverse fast Fourier transformation technique. Numerical examples are presented to validate the developed method and show the ability of mode selection and isolation. A new effective way of transfer function estimation and interpretation is presented by considering the input wave number spectrum in addition to the commonly used input frequency spectrum. The new approach enables the simple physical evaluation of the influences of IDT geometrical features such as electrode finger widths and overall dimension and excitation signal properties on the input-output characteristics of IDT. Finally, considering the convenience of Mindlin plate wave theory in numerical computations as well as theoretical analysis, the validity is examined of using this approximate theory to design IDT for the excitation of the first and second anti-symmetric Lamb modes. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
The choice of genotyping families vs unrelated individuals is a critical factor in any large-scale linkage disequilibrium (LD) study. The use of unrelated individuals for such studies is promising, but in contrast to family designs, unrelated samples do not facilitate detection of genotyping errors, which have been shown to be of great importance for LD and linkage studies and may be even more important in genotyping collaborations across laboratories. Here we employ some of the most commonly-used analysis methods to examine the relative accuracy of haplotype estimation using families vs unrelateds in the presence of genotyping error. The results suggest that even slight amounts of genotyping error can significantly decrease haplotype frequency and reconstruction accuracy, that the ability to detect such errors in large families is essential when the number/complexity of haplotypes is high (low LD/common alleles). In contrast, in situations of low haplotype complexity (high LD and/or many rare alleles) unrelated individuals offer such a high degree of accuracy that there is little reason for less efficient family designs. Moreover, parent-child trios, which comprise the most popular family design and the most efficient in terms of the number of founder chromosomes per genotype but which contain little information for error detection, offer little or no gain over unrelated samples in nearly all cases, and thus do not seem a useful sampling compromise between unrelated individuals and large families. The implications of these results are discussed in the context of large-scale LD mapping projects such as the proposed genome-wide haplotype map.
Resumo:
We investigate the absorption and dispersion properties of a two-level atom driven by a polychromatic field. The driving field is composed of a strong resonant (carrier) frequency component and a large number of symmetrically detuned sideband fields (modulators). A rapid increase in the absorption at the central frequency and the collapse of the response of the system from multiple frequencies to a single frequency are predicted to occur when the Rabi frequency of the modulating fields is equal to the Rabi frequency of the carrier field. These are manifestations of the undressing or a disentanglement of the atomic and driving field states, that leads to a collapse of the atom to its ground state. Our calculation permits consideration of the question of the undressing of the driven atom by a multiple-modulated field and the predicted spectra offer a method of observing undressing. Moreover, we find that the absorption and dispersion spectra split into multiplets whose structures depend on the Rabi frequency of the modulating fields. The spectral features can jump between different resonance frequencies by changing the Rabi frequency of the modulating fields or their initial phases, which can have potential applications as a quantum frequency filter.
Resumo:
A detailed study of the Goniopora reef profile at Dengloujiao, Xuwen County, Leizhou Peninsula, the northern coast of the South China Sea suggests that a series of high-frequency, large-amplitude and abrupt cold events occurred during the Holocene Hypsithermal, an unusual phenomenon termed Leizhou Events in this paper. This period (corresponding to C-14 age of 6.2 -6.7 kaBP or calendar age of 6.7-7.2 kaBP), when the climatic conditions were ideal for coral. reefs to develop, can be divided into at least nine stages. Each stage (or called a climate optimum), lasting about 20 to 50 a, was terminated by an abrupt cold nap and (or) a sea-level lowering event in winter, leading to widespread emergence and death of the Goniopora corals, and growth discontinuities on the coral surface. Such a cyclic process resulted in the creation of a > 4m thick Goniopora reef flat. During this period, the crust subsided periodically but the sea level was rising. The reef profile provides valuable archives for the study of decadal-scale mid-Holocene climatic oscillations in the tropical area of South China. Our results provide new evidence for high-frequency climate instability in the Holocene Hypsithermal, and challenge the traditional understanding of Holocene climate.
Resumo:
The technique of permanently attaching piezoelectric transducers to structural surfaces has demonstrated great potential for quantitative non-destructive evaluation and smart materials design. For thin structural members such as composite laminated plates, it has been well recognized that guided Lamb wave techniques can provide a very sensitive and effective means for large area interrogation. However, since in these applications multiple wave modes are generally generated and the individual modes are usually dispersive, the received signals are very complex and difficult to interpret. An attractive way to deal with this problem has recently been introduced by applying piezoceramic transducer arrays or interdigital transducer (IDT) technologies. In this paper, the acoustic wave field in composite laminated plates excited by piezoceramic transducer arrays or IDT is investigated. Based on dynamic piezoelectricity theory, a discrete layer theory and a multiple integral transform method, an analytical-numerical approach is developed to evaluate the input impedance characteristics of the transducer and the surface velocity response of the plate. The method enables the quantitative evaluation of the influence of the electrical characteristics of the excitation circuit, the geometric and piezoelectric properties of the transducer array, and the mechanical and geometrical features of the laminate. Numerical results are presented to validate the developed method and show the ability of single wave mode selection and isolation. The results show that the interaction between individual elements of the piezoelectric array has a significant influence on the performance of the IDT, and these effects can not be neglected even in the case of low frequency excitation. It is also demonstrated that adding backing materials to the transducer elements can be used to improve the excitability of specific wave modes. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
Input-driven models provide an explicit and readily testable account of language learning. Although we share Ellis's view that the statistical structure of the linguistic environment is a crucial and, until recently, relatively neglected variable in language learning, we also recognize that the approach makes three assumptions about cognition and language learning that are not universally shared. The three assumptions concern (a) the language learner as an intuitive statistician, (b) the constraints on what constitute relevant surface cues, and (c) the redescription problem faced by any system that seeks to derive abstract grammatical relations from the frequency of co-occurring surface forms and functions. These are significant assumptions that must be established if input-driven models are to gain wider acceptance. We comment on these issues and briefly describe a distributed, instance-based approach that retains the key features of the input-driven account advocated by Ellis but that also addresses shortcomings of the current approaches.
Resumo:
Figures on the relative frequency of synthetic and composite future forms in Ouest-France are presented and compared with those of earlier studies on the passé simple and passé composé. The synthetic future is found to be dominant. Possible formal explanations for distribution are found to be inconclusive. Distribution across different text-types is found to be more promising, since contrastive functions of the two forms can be identified in texts where they co-occur. The composite future typically reports new proposals or plans as current news, while the synthetic future outlines details that will be realised at the time of implementation. Both functions are important in dailies, but current news is more often expressed in the present tense at the expense of the composite future.
Resumo:
Semi-aquatic animals represent a transitional locomotor condition characterised by the possession of morphological features that allow locomotion both in water and on land. Most ecologically important behaviours of crocodilians occur in the water, raising the question of whether their 'terrestrial construction' constrains aquatic locomotion. Moreover, the demands for aquatic locomotion change with life-history stage. It was the aim of this research to determine the kinematic characteristics and efficiency of aquatic locomotion in different-sized crocodiles (Crocodylus porosus). Aquatic propulsion was achieved primarily by tail undulations, and the use of limbs during swimming was observed only in very small animals or at low swimming velocities in larger animals. Over the range of swimming speeds we examined, tail beat amplitude did not change with increasing velocity, but amplitude increased significantly with body length. However, amplitude expressed relative to body length decreased with increasing body length. Tail beat frequency increased with swimming velocity but there were no differences in frequency between different-sized animals. Mechanical power generated during swimming and thrust increased non-linearly with swimming velocity, but disproportionally so that kinematic efficiency decreased with increasing swimming velocity. The importance of unsteady forces, expressed as the reduced frequency, increased with increasing swimming velocity. Amplitude is the main determinant of body-size-related increases in swimming velocity but, compared with aquatic mammals and fish, crocodiles are slow swimmers probably because of constraints imposed by muscle performance and unsteady forces opposing forward movement. Nonetheless, the kinematic efficiency of aquatic locomotion in crocodiles is comparable to that of fully aquatic mammals, and it is considerably greater than that of semi-aquatic mammals.
Resumo:
Like many states and territories, South Australia has a legacy of marine reserves considered to be inadequate to meet current conservation objectives. In this paper we configured exploratory marine reserve systems, using the software MARXAN, to examine how efficiently South Australia's existing marine reserves contribute to quantitative biodiversity conservation targets. Our aim was to compare marine reserve systems that retain South Australia's existing marine reserves with reserve systems that are free to either ignore or incorporate them. We devised a new interpretation of irreplaceability to identify planning units selected more than could be expected from chance alone. This is measured by comparing the observed selection frequency for an individual planning unit with a predicted selection frequency distribution. Knowing which sites make a valuable contribution to efficient marine reserve system design allows us to determine how well South Australia's existing reserves contribute to reservation goals when representation targets are set at 5, 10, 15, 20, 30 and 50% of conservation features. Existing marine reserves that tail to contribute to efficient marine reserve systems constitute 'opportunity costs'. We found that despite spanning less than 4% of South Australian state waters, locking in the existing ad hoc marine reserves presented considerable opportunity costs. Even with representation targets set at 50%, more than halt of South Australia's existing marine reserves were selected randomly or less in efficient marine reserve systems. Hence, ad hoc marine reserve systems are likely to be inefficient and may compromise effective conservation of marine biodiversity.
Resumo:
The tests that are currently available for the measurement of overexpression of the human epidermal growth factor-2 (HER2) in breast cancer have shown considerable problems in accuracy and interlaboratory reproducibility. Although these problems are partly alleviated by the use of validated, standardised 'kits', there may be considerable cost involved in their use. Prior to testing it may therefore be an advantage to be able to predict from basic pathology data whether a cancer is likely to overexpress HER2. In this study, we have correlated pathology features of cancers with the frequency of HER2 overexpression assessed by immunohistochemistry (IHC) using HercepTest (Dako). In addition, fluorescence in situ hybridisation (FISH) has been used to re-test the equivocal cancers and interobserver variation in assessing HER2 overexpression has been examined by a slide circulation scheme. Of the 1536 cancers, 1144 (74.5%) did not overexpress HER2. Unequivocal overexpression (3+ by IHC) was seen in 186 cancers (12%) and an equivocal result (2+ by IHC) was seen in 206 cancers (13%). Of the 156 IHC 3+ cancers for which complete data was available, 149 (95.5%) were ductal NST and 152 (97%) were histological grade 2 or 3. Only 1 of 124 infiltrating lobular carcinomas (0.8%) showed HER2 overexpression. None of the 49 'special types' of carcinoma showed HER2 overexpression. Re-testing by FISH of a proportion of the IHC 2+ cancers showed that only 25 (23%) of those assessable exhibited HER2 gene amplification, but 46 of the 47 IHC 3+ cancers (98%) were confirmed as showing gene amplification. Circulating slides for the assessment of HER2 score showed a moderate level of agreement between pathologists (kappa 0.4). As a result of this study we would advocate consideration of a triage approach to HER-2 testing. Infiltrating lobular and special types of carcinoma may not need to be routinely tested at presentation nor may grade 1 NST carcinomas in which only 1.4% have been shown to overexpress HER2. Testing of these carcinomas may be performed when HER2 status is required to assist in therapeutic or other clinical/prognostic decision-making. The highest yield of HER2 overexpressing carcinomas is seen in the grade 3 NST subgroup in which 24% are positive by IHC. (C) 2003 Elsevier Science Ltd. All rights reserved.
Resumo:
Doped ceria (CeO2) compounds are fluorite-type oxides which show oxide ionic conductivity higher than yttria-stabilized zirconia in oxidizing atmosphere. As a consequence of this, considerable interest has been shown in applications of these materials for low or intermediate temperature operation of solid-oxide fuel cells (SOFCs). In this study, the effective index was suggested to maximize the ionic conductivity in La2O3-CeO2 based oxides. The index considers the fluorite structure, and combines the expected oxygen vacancy level with the ionic radius mismatch between host and dopant cations. Using this approach, the ionic conductivity of this system has been optimized and tested under operating conditions of SOFCs. LaxCe1-xO2-delta (x = 0.125, 0.15, 0.175, and 0.20), (LaxSr1-x)(0.175)Ce0.825O2-delta (x = 0.1, 0.2, and 0.4), and (La1-xSr0.2Bax)(0.175)Ce0.825O2-delta (x 5 0.03, 0.05, and 0.07) were prepared and characterized as the specimens with low, intermediate, and high index, respectively. The ionic conductivity was increased with increasing suggested index. The transmission electron microscopy analysis suggested that partial substitution of alkaline earth elements in place of La into Ce site contributes to a decrease of microdomain size and an improvement of conductivity. (La0.75Sr0.2Ba0.05)(0.175)Ce0.825O1.891 with high index and small microdomains exhibited the highest conductivity, wide ionic domain, and good performance in SOFCs. (C) 2003 The Electrochemical Society.