961 resultados para Francis turbine


Relevância:

20.00% 20.00%

Publicador:

Resumo:

An experimental investigation of a turbine stage featuring very high end wall angles is presented. The initial turbine design did not achieve a satisfactory performance and the difference between the design predictions and the test results was traced to a large separated region on the rear suction-surface. To improve the agreement between computational fluid dynamics (CFD) and experiment, it was found necessary to modify the turbulence modeling employed. The modified CFD code was then used to redesign the vane, and the changes made are described. When tested, the performance of the redesigned vane was found to have much closer agreement with the predictions than the initial vane. Finally, the flowfield and performance of the redesigned stage are compared to a similar turbine, designed to perform the same duty, which lies in an annulus of moderate end wall angles. A reduction in stage efficiency of at least 2.4% was estimated for the very high end wall angle design. © 2014 by ASME.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In steam power plants condensation already starts in the flow path of the low pressure part of the steam turbine, which leads to a complex three-dimensional two-phase flow. Wetness losses are caused due to thermodynamic and mechanical relaxation processes during condensation and droplet transport. The present investigation focuses on the unsteady effects due to rotor-stator interaction on the droplet formation process. Results of unsteady three dimensional flow simulations of a two-stage steam turbine are presented, whereby this is the first time that non-equilibrium condensation is considered in such simulations. The numerical approach is based on RANS equations, which are extended by a wet steam specific nucleation and droplet growth model. Despite the use of a high performance cluster the unsteady simulation has a considerably high simulation time of approximately 60 days by use of 48 CPUs. © Springer-Verlag Berlin Heidelberg 2012.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Results of numerical investigations of the wet steam flow in a three stage low pressure steam turbine test rig are presented. The test rig is a scale model of a modern steam turbine design and provides flow measurements over a range of operating conditions which are used for detailed comparisons with the numerical results. For the numerical analysis a modern CFD code with user defined models for specific wet steam modelling is used. The effect of different theoretical models for nucleation and droplet growth are examined. It is shown that heterogeneous condensation is highly dependent on steam quality and, in this model turbine with high quality steam, a homogeneous theory appears to be the best choice. The homogeneous theory gives good agreement between the test rig traverse measurements and the numerical results. The differences in the droplet size distribution of the three stage turbine are shown for different loads and modelling assumptions. The different droplet growth models can influence the droplet size by a factor of two. An estimate of the influence of unsteady effects is made by means of an unsteady two-dimensional simulation. The unsteady modelling leads to a shift of nucleation into the next blade row. For the investigated three stage turbine the influence due to wake chopping on the condensation process is weak but to confirm this conclusion further investigations are needed in complete three dimensions and on turbines with more stages. Copyright © 2011 by ASME.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The influence of non-equilibrium condensation on the flow field and performance of a three stage low pressure model steam turbine is examined using modern three dimensional CFD techniques. An equilibrium steam model and a non-equilibrium steam model, which accounts for both subcooling and condensation effects, are used, and have been verified by comparison with test data in an earlier publication [1]. The differences in the calculated flow field and turbine performance with these models show that the latent heat released during condensation influences both the thermodynamic and the aerodynamic performance of the turbine, leading to a change in inlet flow angles of about 5°. The calculated three dimensional flowfield is used to investigate the magnitude and distribution of the additional thermo-dynamic wetness loss arising from steam condensation under non-equilibrium flow conditions. Three simple methods are described to calculate this, and all show that this amounts to around 6.5% of the total losses at the design condition. At other load conditions the wetness losses change in magnitude and axial distribution in the turbine. © 2010 by ASME.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two-phase computational fluid dynamics modelling is used to investigate the magnitude of different contributions to the wet steam losses in a three-stage model low pressure steam turbine. The thermodynamic losses (due to irreversible heat transfer across a finite temperature difference) and the kinematic relaxation losses (due to the frictional drag of the drops) are evaluated directly from the computational fluid dynamics simulation using a concept based on entropy production rates. The braking losses (due to the impact of large drops on the rotor) are investigated by a separate numerical prediction. The simulations show that in the present case, the dominant effect is the thermodynamic loss that accounts for over 90% of the wetness losses and that both the thermodynamic and the kinematic relaxation losses depend on the droplet diameter. The numerical results are brought into context with the well-known Baumann correlation, and a comparison with available measurement data in the literature is given. The ability of the numerical approach to predict the main wetness losses is confirmed, which permits the use of computational fluid dynamics for further studies on wetness loss correlations. © IMechE 2013 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The three-stage low-pressure model steam turbine at the Institute of Thermal Turbomachinery and Machinery Laboratory (ITSM) was used to study the impact of three different steam inlet temperatures on the homogeneous condensation process and the resulting wetness topology. The droplet spectrum as well as the particle number concentration were measured in front of the last stage using an optical-pneumatic probe. At design load, condensation starts inside the stator of the second stage. A change in the steam inlet temperature is able to shift the location of condensation onset within the blade row up- or downstream and even into adjoining blade passages, which leads to significantly different local droplet sizes and wetness fractions due to different local expansion rates. The measured results are compared to steady three-dimensional computational fluid dynamics calculations. The predicted nucleation zones could be largely confirmed by the measurements. Although the trend of measured and calculated droplet size across the span is satisfactory, there are considerable differences between the measured and computed droplet spectrum and wetness fractions. © IMechE 2013 Reprints and permissions: sagepub.co.uk/ journalsPermissions.nav.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This article considers constant-pressure autoignition and freely propagating premixed flames of cold methane/air mixtures mixed with equilibrium hot products at high enough dilution levels to burn within the moderate to intense low oxygen dilution (MILD) combustion regime. The analysis is meant to provide further insight on MILD regime boundaries and to identify the effect of hot products speciation. As the mass fraction of hot products in the reactants mixture increases, autoignition occurs earlier. Species profiles show that the products/reactants mixture approximately equilibrates to a new state over a quick transient well before the main autoignition event, but as dilution becomes very high, this equilibration transient becomes more prominent and eventually merges with the primary ignition event. The dilution level at which these two reactive zones merge corresponds well with that marking the transition into the MILD regime, as defined according to conventional criteria. Similarly, premixed flame simulations at high dilutions show evidence of significant reactions involving intermediate species prior to the flame front. Since the premixed flame governing equations system demands that the species and temperature gradients be zero at the "cold" boundary, flame speed cannot be calculated above a certain dilution level. Up to this point, which again agrees reasonably well with the transition into the MILD regime according to convention, the laminar burning velocity was found to increase with hot product dilution while flame thickness remained largely unchanged. Some comments on the MILD combustion regime boundary definition for gas turbine applications are included. Copyright © Taylor & Francis Group, LLC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

© 2014 by ASME. This paper, the second of two parts, presents a new setup for the two-stage two-spool facility located at the Institute for Thermal Turbomachinery and Machine Dynamics (ITTM) of Graz University of Technology. The rig was designed to reproduce the flow behavior of a transonic turbine followed by a counter-rotating low pressure stage such as those in high bypass aero-engines. The meridional flow path of the machine is characterized by a diffusing S-shaped duct between the two rotors. The role of wide chord vanes placed into the mid turbine frame is to lead the flow towards the low pressure (LP) rotor with appropriate swirl. Experimental and numerical investigations performed on this setup showed that the wide chord struts induce large wakes and extended secondary flows at the LP inlet flow. Moreover, large deterministic fluctuations of pressure, which may cause noise and blade vibrations, were observed downstream of the LP rotor. In order to minimize secondary vortices and to damp the unsteady interactions, the mid turbine frame was redesigned to locate two zero-lift splitters into each vane passage. While in the first part of the paper the design process of the splitters and the time-averaged flow field were presented, in this second part the measurements performed by means of a fast response probe will support the explanation of the time-resolved field. The discussion will focus on the comparison between the baseline case (without splitters) and the embedded design.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

© 2014 by ASME. The paper presents a new setup for the two-stage two-spool facility located at the Institute for Thermal Turbomachinery and Machine Dynamics (ITTM) of Graz University of Technology. The rig was designed in order to simulate the flow behavior of a transonic turbine followed by a counter-rotating low pressure (LP) stage like the spools of a modern high bypass aeroengine. The meridional flow path of the machine is characterized by a diffusing S-shaped duct between the two rotors. The role of turning struts placed into the mid turbine frame is to lead the flow towards the LP rotor with appropriate swirl. Experimental and numerical investigations performed on the setup over the last years, which were used as baseline for this paper, showed that wide chord vanes induce large wakes and extended secondary flows at the LP rotor inlet flow. Moreover, unsteady interactions between the two turbines were observed downstream of the LP rotor. In order to increase the uniformity and to decrease the unsteady content of the flow at the inlet of the LP rotor, the mid turbine frame was redesigned with two zero-lifting splitters embedded into the strut passage. In this first part of the paper the design process of the splitters and its critical points are presented, while the time-averaged field is discussed by means of five-hole probe measurements and oil flow visualizations. The comparison between the baseline case and the embedded design configuration shows that the new design is able to reduce the flow gradients downstream of the turning struts, providing a more suitable inlet condition for the low pressure rotor. The improvement in the flow field uniformity is also observed downstream of the turbine and it is, consequently, reflected in an enhancement of the LP turbine performance. In the second part of this paper the influence of the embedded design on the time-resolved field is investigated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Premixed combustion of hydrogen gas and air was performed in a stainless steel based micro-annular combustor for a micro-gas turbine system. Micro-scale combustion has proved to be stable in the micro-combustor with a gap of 2 mm. The operating range of the micro-combustor was measured, and the maximum excess air ratio is up to 4.5. The distribution of the outer wall temperature and the temperature of exhaust gas of the micro-conbustor with excess air ratio were obtained, and the wall temperature of the micro-combustor reaches its maximum value at the excess air ratio of 0.9 instead of 1 (stoichiometric ratio). The heat loss of the micro-combustor to the environment was calculated and even exceeds 70% of the total thermal power computed from the consumed hydrogen mass flow rate. Moreover, radiant hunt transfer covers a large fraction of the total heat loss. Measures used to reduce the heat loss were proposed to improve the thermal performance of the micro-combustor. The optimal operating status of the micro-combustor and micro-gas turbine is analyzed and proposed by analyzing the relationship of the temperature of the exhaust gas of the micro-combustor with thermal power and excess air ratio. The investigation of the thermal performance of the micro-combustor is helpful to design an improved microcombustor.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Matthew, Francis, 'Poems By Matthew Francis', Poetry Wales (2007) 42.4 RAE2008

Relevância:

20.00% 20.00%

Publicador:

Resumo:

http://www.archive.org/details/moravianmissions014001mbp

Relevância:

20.00% 20.00%

Publicador:

Resumo:

http://www.archive.org/details/thepoliticalprin00weicuoft