967 resultados para Forest surveys.
Resumo:
Advances in forest carbon mapping have the potential to greatly reduce uncertainties in the global carbon budget and to facilitate effective emissions mitigation strategies such as REDD+ (Reducing Emissions from Deforestation and Forest Degradation). Though broad-scale mapping is based primarily on remote sensing data, the accuracy of resulting forest carbon stock estimates depends critically on the quality of field measurements and calibration procedures. The mismatch in spatial scales between field inventory plots and larger pixels of current and planned remote sensing products for forest biomass mapping is of particular concern, as it has the potential to introduce errors, especially if forest biomass shows strong local spatial variation. Here, we used 30 large (8-50 ha) globally distributed permanent forest plots to quantify the spatial variability in aboveground biomass density (AGBD in Mgha(-1)) at spatial scales ranging from 5 to 250m (0.025-6.25 ha), and to evaluate the implications of this variability for calibrating remote sensing products using simulated remote sensing footprints. We found that local spatial variability in AGBD is large for standard plot sizes, averaging 46.3% for replicate 0.1 ha subplots within a single large plot, and 16.6% for 1 ha subplots. AGBD showed weak spatial autocorrelation at distances of 20-400 m, with autocorrelation higher in sites with higher topographic variability and statistically significant in half of the sites. We further show that when field calibration plots are smaller than the remote sensing pixels, the high local spatial variability in AGBD leads to a substantial ``dilution'' bias in calibration parameters, a bias that cannot be removed with standard statistical methods. Our results suggest that topography should be explicitly accounted for in future sampling strategies and that much care must be taken in designing calibration schemes if remote sensing of forest carbon is to achieve its promise.
Resumo:
Accuracy in tree woody growth estimates is important to global carbon budget estimation and climate-change science. Tree growth in permanent sampling plots (PSPs) is commonly estimated by measuring stem diameter changes, but this method is susceptible to bias resulting from water-induced reversible stem shrinkage. In the absence of bias correction, temporal variability in growth is likely to be overestimated and incorrectly attributed to fluctuations in resource availability, especially in forests with high seasonal and inter-annual variability in water. We propose and test a novel approach for estimating and correcting this bias at the community level. In a 50-ha PSP from a seasonally dry tropical forest in southern India, where tape measurements have been taken every four years from 1988 to 2012, for nine trees we estimated bias due to reversible stem shrinkage as the difference between woody growth measured using tree rings and that estimated from tape. We tested if the bias estimated from these trees could be used as a proxy to correct bias in tape-based growth estimates at the PSP scale. We observed significant shrinkage-related bias in the growth estimates of the nine trees in some censuses. This bias was strongly linearly related to tape-based growth estimates at the level of the PSP, and could be used as a proxy. After bias was corrected, the temporal variance in growth rates of the PSP decreased, while the effect of exceptionally dry or wet periods was retained, indicating that at least a part of the temporal variability arose from reversible shrinkage-related bias. We also suggest that the efficacy of the bias correction could be improved by measuring the proxy on trees that belong to different size classes and census timing, but not necessarily to different species. Our approach allows for reanalysis - and possible reinterpretation of temporal trends in tree growth, above ground biomass change, or carbon fluxes in forests, and their relationships with resource availability in the context of climate change. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
Logging and hunting are two key direct threats to the survival of wildlife in the tropics, and also disrupt important ecosystem processes. We investigated the impacts of these two factors on the different stages of the seed dispersal cycle, including abundance of plants and their dispersers and dispersal of seeds and recruitment, in a tropical forest in north-east India. We focused on hornbills, which are important seed dispersers in these forests, and their food tree species. We compared abundances of hornbill food tree species in a site with high logging and hunting pressures (heavily disturbed) with a site that had no logging and relatively low levels of hunting (less disturbed) to understand logging impacts on hornbill food tree abundance. We compared hornbill abundances across these two sites. We, then, compared the scatter-dispersed seed arrival of five large-seeded tree species and the recruitment of four of those species. Abundances of hornbill food trees that are preferentially targeted by logging were two times higher in the less disturbed site as compared to the heavily disturbed site while that of hornbills was 22 times higher. The arrival of scatter-dispersed seeds was seven times higher in the less disturbed site. Abundances of recruits of two tree species were significantly higher in the less disturbed site. For another species, abundances of younger recruits were significantly lower while that of older recruits were higher in the heavily disturbed site. Our findings suggest that logging reduces food plant abundance for an important frugivore-seed disperser group, while hunting diminishes disperser abundances, with an associated reduction in seed arrival and altered recruitment of animal-dispersed tree species in the disturbed site. Based on our results, we present a conceptual model depicting the relationships and pathways between vertebrate-dispersed trees, their dispersers, and the impacts of hunting and logging on these pathways.
Resumo:
The loss of tropical forests and associated biodiversity is a global concern. Conservation efforts in tropical countries such as India have mostly focused on state-administered protected areas despite the existence of vast tracts of forest outside these areas. We studied hornbills (Bucerotidae), an ecologically important vertebrate group and a flagship for tropical forest conservation, to assess the importance of forests outside protected areas in Arunachal Pradesh, north-east India. We conducted a state-wide survey to record encounters with hornbills in seven protected areas, six state-managed reserved forests and six community-managed unclassed forests. We estimated the density of hornbills in one protected area, four reserved forests and two unclassed forests in eastern Arunachal Pradesh. The state-wide survey showed that the mean rate of encounter of rufous-necked hornbills Aceros nipalensis was four times higher in protected areas than in reserved forests and 22 times higher in protected areas than in unclassed forests. The mean rate of encounter of wreathed hornbills Rhyticeros undulatus was twice as high in protected areas as in reserved forests and eight times higher in protected areas than in unclassed forests. The densities of rufous-necked hornbill were higher inside protected areas, whereas the densities of great hornbill Buceros bicornis and wreathed hornbill were similar inside and outside protected areas. Key informant surveys revealed possible extirpation of some hornbill species at sites in two protected areas and three unclassed forests. These results highlight a paradoxical situation where individual populations of hornbills are being lost even in some legally protected habitat, whereas they continue to persist over most of the landscape. Better protection within protected areas and creative community-based conservation efforts elsewhere are necessary to maintain hornbill populations in this biodiversity-rich region.
Resumo:
Woody tree species in seasonally dry tropical forests are known to have traits that help them to recover from recurring disturbances such as fire. Two such traits are resprouting and rapid post-fire growth. We compared survival and growth rates of regenerating small-sized individuals (juveniles) of woody tree species after dry season fire (February-March) at eight adjacent pairs of burnt and unburnt transects in a seasonally dry tropical forest in southern India. Juveniles were monitored at 3-mo intervals between August 2009 and August 2010. High juvenile survivorship (>95%) was observed in both burnt and unburnt areas. Growth rates of juveniles, analyzed at the community level as well as for a few species individually (especially fast-growing ones), were distinctly higher in burnt areas compared to unburnt areas after a fire event, particularly during the pre-monsoon season immediately after a fire. Rapid growth by juveniles soon after a fire may be due to lowered competition from other vegetative forms such as grasses, possibly aided by the availability of resources stored belowground. Such an adaptation would allow a juvenile bank to be retained in the understory of a dry forest, from where individuals can grow to a possible fire-tolerant size during favorable conditions.
Resumo:
Hornbills, among the largest and most threatened tropical frugivores, provide important seed dispersal services. Hornbill nest site characteristics are known primarily from wet tropical forests. Nests of the Indian grey hornbill Ocyceros birostris and Oriental pied hornbill Anthracoceros albirostris were characterized in a tropical dry forest. Despite A. albirostris being twice the size of O. birostris, few of the nest cavity attributes were different. A. albirostris nests were surrounded by higher proportion of mixed forest and lower sal forest compared to O. birostris. In this landscape, the larger A. albirostris may prefer to nest in sites with more food plants compared to the smaller O. birostris.
Resumo:
Sacred groves are patches of forests of special spiritual significance to humans, offering also a diverse range of ecological and environmental services. We have attempted here to understand the local hydrological dynamics of a sacred forest, in terms of the benefits the village community derive, in central Western Ghats region of India. A comparative assessment has been made between two small watersheds in terms of their landscape structure (woody species composition) with soil water properties and availability of water in the respective downstream villages. The result shows that, sacred site with more primeval vegetation has close association with soil moisture in comparison to non-sacred site during dry spell of the year. The higher soil moisture ensures year long availability of water in the downstream village of the sacred site which facilitates farming of commercial crops with higher economic returns to the farmers, unlike the farmers in the other village where they face water crisis during the lean season. The study emphasizes the need for conservation endeavour on sacred groves highlighting its potential for water conservation at local and regional levels.
Resumo:
Mangrove forests in meso-tidal areas are completely drained during low tides, forming only temporary habitats for fish. We hypothesised that in such temporary habitats, where stranding risks are high, distance from tidal creeks that provided access to inundated areas during receding tides would be the primary determinant of fish distribution. Factors such as depth, root density and shade were hypothesised to have secondary effects. We tested these hypotheses in a tidally drained mangrove patch in the Andaman Islands, India. Using stake nets, we measured fish abundance and species richness relative to distance from creeks, root density/m(2), shade, water depth and size (total length) of fish. We also predicted that larger fish (including potential predators) would be closer to creeks, as they faced a greater chance of mortality if stranded. Thus we conducted tethering trials to examine if predation would be greater close to the creeks. Generalised linear mixed effects models showed that fish abundance was negatively influenced by increasing creek distance interacting with fish size and positively influenced by depth. Quantile regression analysis showed that species richness was limited by increasing creek distance. Proportion of predation was greatest close to the creeks (0-25 m) and declined with increasing distance. Abundance was also low very close to the creeks, suggesting that close to the creeks predation pressure may be an important determinant of fish abundance. The overall pattern however indicates that access to permanently inundated areas, may be an important determinant of fish distribution in tidally drained mangrove forests.
Resumo:
(Document pdf contains 9 pages)
Resumo:
(Document pdf contains 19 pages)
Resumo:
pdf contains 60 pages
Resumo:
Introduction: The National Oceanic and Atmospheric Administration’s Biogeography Branch has conducted surveys of reef fish in the Caribbean since 1999. Surveys were initially undertaken to identify essential fish habitat, but later were used to characterize and monitor reef fish populations and benthic communities over time. The Branch’s goals are to develop knowledge and products on the distribution and ecology of living marine resources and provide resource managers, scientists and the public with an improved ecosystem basis for making decisions. The Biogeography Branch monitors reef fishes and benthic communities in three study areas: (1) St. John, USVI, (2) Buck Island, St. Croix, USVI, and (3) La Parguera, Puerto Rico. In addition, the Branch has characterized the reef fish and benthic communities in the Flower Garden Banks National Marine Sanctuary, Gray’s Reef National Marine Sanctuary and around the island of Vieques, Puerto Rico. Reef fish data are collected using a stratified random sampling design and stringent measurement protocols. Over time, the sampling design has changed in order to meet different management objectives (i.e. identification of essential fish habitat vs. monitoring), but the designs have always remained: • Probabilistic – to allow inferences to a larger targeted population, • Objective – to satisfy management objectives, and • Stratified – to reduce sampling costs and obtain population estimates for strata. There are two aspects of the sampling design which are now under consideration and are the focus of this report: first, the application of a sample frame, identified as a set of points or grid elements from which a sample is selected; and second, the application of subsampling in a two-stage sampling design. To evaluate these considerations, the pros and cons of implementing a sampling frame and subsampling are discussed. Particular attention is paid to the impacts of each design on accuracy (bias), feasibility and sampling cost (precision). Further, this report presents an analysis of data to determine the optimal number of subsamples to collect if subsampling were used. (PDF contains 19 pages)
Resumo:
The science of fisheries acoustics and its applicability to resource management have evolved over the past several decades. This document provides a basic description of fisheries acoustics and recommendations on using this technology for research and monitoring of fish distributions and habitats within sanctuaries. It also describes recent efforts aimed at applying fisheries acoustics to Gray’s Reef National Marine Sanctuary (GRNMS) (Figure 1). Historically, methods to assess the underwater environment have included net trawls, diver censuses, hook and line, video, sonar and other techniques deployed in a variety of ways. Fisheries acoustics, using active sonar, relies on the physics of sound traveling through water to quantify the distribution of biota in the water column. By sending a signal of a given frequency through the water column and recording the time of travel and the strength of the reflected signal, it is possible to determine the size and location of fish and estimate biomass from the acoustic backscatter. As a fisheries assessment tool, active hydroacoustics technology is an efficient, non-intrusive method of mapping the water column at a very fine spatial and temporal resolution. It provides a practical alternative to bottom and mid-water trawls, which are not allowed at GRNMS. Passive acoustics, which uses underwater hydrophones to record man-made and natural sounds such as fish spawning calls and sounds produced by marine mammals for communication and echolocation, can provide a useful, complementary survey tool. This report primarily deals with active acoustics, although the integration of active and passive acoustics is addressed as well. (PDF contains 32 pages)