969 resultados para Forecasting model
Resumo:
Transportation Department, Washington, D.C.
Resumo:
National Highway Traffic Safety Administration, Office of Research and Development, Washington, D.C.
Resumo:
Transportation Department, Washington, D.C.
Resumo:
Transportation Department, Washington, D.C.
Resumo:
Bibliography: p. 30-34.
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
"December, 1977."
Resumo:
A framework for developing marketing category management decision support systems (DSS) based upon the Bayesian Vector Autoregressive (BVAR) model is extended. Since the BVAR model is vulnerable to permanent and temporary shifts in purchasing patterns over time, a form that can correct for the shifts and still provide the other advantages of the BVAR is a Bayesian Vector Error-Correction Model (BVECM). We present the mechanics of extending the DSS to move from a BVAR model to the BVECM model for the category management problem. Several additional iterative steps are required in the DSS to allow the decision maker to arrive at the best forecast possible. The revised marketing DSS framework and model fitting procedures are described. Validation is conducted on a sample problem.
Resumo:
In deregulated electricity market, modeling and forecasting the spot price present a number of challenges. By applying wavelet and support vector machine techniques, a new time series model for short term electricity price forecasting has been developed in this paper. The model employs both historical price and other important information, such as load capacity and weather (temperature), to forecast the price of one or more time steps ahead. The developed model has been evaluated with the actual data from Australian National Electricity Market. The simulation results demonstrated that the forecast model is capable of forecasting the electricity price with a reasonable forecasting accuracy.
Resumo:
This paper presents a forecasting technique for forward electricity/gas prices, one day ahead. This technique combines a Kalman filter (KF) and a generalised autoregressive conditional heteroschedasticity (GARCH) model (often used in financial forecasting). The GARCH model is used to compute next value of a time series. The KF updates parameters of the GARCH model when the new observation is available. This technique is applied to real data from the UK energy markets to evaluate its performance. The results show that the forecasting accuracy is improved significantly by using this hybrid model. The methodology can be also applied to forecasting market clearing prices and electricity/gas loads.
Resumo:
This thesis is a study of three techniques to improve performance of some standard fore-casting models, application to the energy demand and prices. We focus on forecasting demand and price one-day ahead. First, the wavelet transform was used as a pre-processing procedure with two approaches: multicomponent-forecasts and direct-forecasts. We have empirically compared these approaches and found that the former consistently outperformed the latter. Second, adaptive models were introduced to continuously update model parameters in the testing period by combining ?lters with standard forecasting methods. Among these adaptive models, the adaptive LR-GARCH model was proposed for the fi?rst time in the thesis. Third, with regard to noise distributions of the dependent variables in the forecasting models, we used either Gaussian or Student-t distributions. This thesis proposed a novel algorithm to infer parameters of Student-t noise models. The method is an extension of earlier work for models that are linear in parameters to the non-linear multilayer perceptron. Therefore, the proposed method broadens the range of models that can use a Student-t noise distribution. Because these techniques cannot stand alone, they must be combined with prediction models to improve their performance. We combined these techniques with some standard forecasting models: multilayer perceptron, radial basis functions, linear regression, and linear regression with GARCH. These techniques and forecasting models were applied to two datasets from the UK energy markets: daily electricity demand (which is stationary) and gas forward prices (non-stationary). The results showed that these techniques provided good improvement to prediction performance.
Resumo:
The generation of very short range forecasts of precipitation in the 0-6 h time window is traditionally referred to as nowcasting. Most existing nowcasting systems essentially extrapolate radar observations in some manner, however, very few systems account for the uncertainties involved. Thus deterministic forecast are produced, which have a limited use when decisions must be made, since they have no measure of confidence or spread of the forecast. This paper develops a Bayesian state space modelling framework for quantitative precipitation nowcasting which is probabilistic from conception. The model treats the observations (radar) as noisy realisations of the underlying true precipitation process, recognising that this process can never be completely known, and thus must be represented probabilistically. In the model presented here the dynamics of the precipitation are dominated by advection, so this is a probabilistic extrapolation forecast. The model is designed in such a way as to minimise the computational burden, while maintaining a full, joint representation of the probability density function of the precipitation process. The update and evolution equations avoid the need to sample, thus only one model needs be run as opposed to the more traditional ensemble route. It is shown that the model works well on both simulated and real data, but that further work is required before the model can be used operationally. © 2004 Elsevier B.V. All rights reserved.
Resumo:
The aim of this research was to improve the quantitative support to project planning and control principally through the use of more accurate forecasting for which new techniques were developed. This study arose from the observation that in most cases construction project forecasts were based on a methodology (c.1980) which relied on the DHSS cumulative cubic cost model and network based risk analysis (PERT). The former of these, in particular, imposes severe limitations which this study overcomes. Three areas of study were identified, namely growth curve forecasting, risk analysis and the interface of these quantitative techniques with project management. These fields have been used as a basis for the research programme. In order to give a sound basis for the research, industrial support was sought. This resulted in both the acquisition of cost profiles for a large number of projects and the opportunity to validate practical implementation. The outcome of this research project was deemed successful both in theory and practice. The new forecasting theory was shown to give major reductions in projection errors. The integration of the new predictive and risk analysis technologies with management principles, allowed the development of a viable software management aid which fills an acknowledged gap in current technology.
Resumo:
Working within the framework of the branch of Linguistics known as discourse analysis, and more specifically within the current approach of genre analysis, this thesis presents an analysis of the English of economic forecasting. The language of economic forecasting is highly specialised and follows certain conventions of structure and style. This research project identifies these characteristics and explains them in terms of their communicative function. The work is based on a corpus of texts published in economic reports and surveys by major corporate bodies. These documents are targeted at an international expert readership familiar with this genre. The data is analysed at two broad levels: firstly, the macro-level of text structure which is described in terms of schema-theory, a currently influential model of analysis, and, secondly, the micro-level of authors' strategies for modulating the predictions which form the key move in the forecasting schema. The thesis aims to contribute to the newly developing field of genre analysis in a number of ways: firstly, by a coverage of a hitherto neglected but intrinsically interesting and important genre (Economic Forecasting); secondly, by testing the applicability of existing models of analysis at the level of schematic structure and proposing a genre-specific model; thirdly by offering insights into the nature of modulation of propositions which is often broadly classified as `hedging' or `modality', and which has been recently described as lq`an area for prolonged fieldwork'. This phenomenon is shown to be a key feature of this particular genre. It is suggested that this thesis, in addition to its contribution to the theory of genre analysis, provides a useful basis for work by teachers of English for Economics, an important area of English for Specific Purposes.