920 resultados para Foot Diseases
Cytokine gene polymorphisms in multifactorial diseases: gateways to novel targets for immunotherapy?
Resumo:
Developing effective treatments for neurodegenerative diseases is one of the greatest medical challenges of the 21st century. Although many of these clinical entities have been recognized for more than a hundred years, it is only during the past twenty years that the molecular events that precipitate disease have begun to be understood. Protein aggregation is a common feature of many neurodegenerative diseases, and it is assumed that the aggregation process plays a central role in pathogenesis. In this process, one molecule (monomer) of a soluble protein interacts with other monomers of the same protein to form dimers, oligomers, and polymers. Conformation changes in three-dimensional structure of the protein, especially the formation of beta-strands, often accompany the process. Eventually, as the size of the aggregates increases, they may precipitate as insoluble amyloid fibrils, in which the structure is stabilized by the beta-strands interacting within a beta-sheet. In this review, we discuss this theme as it relates to the two most common neurodegenerative conditions-Alzheimer's and Parkinson's diseases.
Resumo:
Background: Cough is a prominent symptom across a range of common chronic respiratory diseases and impacts considerably on patient health status.
Methods: We undertook a cross-sectional comparison of scores from two cough-specific health-related quality of life (HRQoL) questionnaires, the Leicester Cough Questionnaire (LCQ), and the Cough Quality of Life Questionnaire (CQLQ), together with a generic HRQoL measure, the EuroQol. Questionnaires were administered to and spirometry performed on 147 outpatients with chronic cough (n = 83), COPD (n = 18), asthma (n = 20), and bronchiectasis (n = 26).
Results: There was no significant difference in the LCQ and CQLQ total scores between groups (p = 0.24 and p = 0.26, respectively). Exploratory analyses of questionnaire subdomains revealed differences in psychosocial issues and functional impairment between the four groups (p = 0.01 and p = 0.05, respectively). CQLQ scores indicated that chronic coughers have more psychosocial issues than patients with bronchiectasis (p = 0.03) but less functional impairment than COPD patients (p = 0.04). There was a significant difference in generic health status across the four disease groups (p = 0.04), with poorest health status in COPD patients. A significant inverse correlation was observed between CQLQ and LCQ in each disease group (chronic cough r = - 0.56, p < 0.001; COPD r = - 0.49, p = 0.04; asthma r = - 0.94, p < 0.001; and bronchiectasis r = - 0.88, p < 0.001). There was no correlation between cough questionnaire scores and FEV1 in any group, although a significant correlation between EuroQol visual analog scale component and FEV1 (r = 0.639, p = 0.004) was observed in COPD patients.
Conclusion: Cough adversely affects health status across a range of common respiratory diseases. The LCQ and CQLQ can each provide important additional information concerning the impact of cough.
Resumo:
Foot-and-mouth disease virus (FMDV), a member of the Picornaviridae, is a pathogen of cloven-hoofed animals and causes a disease of major economic importance. Picornavirus-infected cells show changes in cell morphology and rearrangement of cytoplasmic membranes, which are a consequence of virus replication. We show here, by confocal immunofluorescence and electron microscopy, that the changes in morphology of FMDV-infected cells involve changes in the distribution of microtubule and intermediate filament components during infection. Despite the continued presence of centrosomes in infected cells, there is a loss of tethering of microtubules to the microtubule organizing center (MTOC) region. Loss of labeling for -tubulin, but not pericentrin, from the MTOC suggests a targeting of -tubulin (or associated proteins) rather than a total breakdown in MTOC structure. The identity of the FMDV protein(s) responsible was determined by the expression of individual viral nonstructural proteins and their precursors in uninfected cells. We report that the only viral nonstructural protein able to reproduce the loss of -tubulin from the MTOC and the loss of integrity of the microtubule system is FMDV 3Cpro. In contrast, infection of cells with another picornavirus, bovine enterovirus, did not affect -tubulin distribution, and the microtubule network remained relatively unaffected.
Resumo:
BACKGROUND:
The genetic heterogeneity of many Mendelian disorders, such as retinitis pigmentosa which results from mutations in over 40 genes, is a major obstacle to obtaining a molecular diagnosis in clinical practice. Targeted high-throughput DNA sequencing offers a potential solution and was used to develop a molecular diagnostic screen for patients with retinitis pigmentosa.
METHODS:
A custom sequence capture array was designed to target the coding regions of all known retinitis pigmentosa genes and used to enrich these sequences from DNA samples of five patients. Enriched DNA was subjected to high-throughput sequencing singly or in pools, and sequence variants were identified by alignment of up to 10 million reads per sample to the normal reference sequence. Potential pathogenicity was assessed by functional predictions and frequency in controls.
RESULTS AND CONCLUSIONS:
Known homozygous PDE6B and compound heterozygous CRB1 mutations were detected in two patients. A novel homozygous missense mutation (c.2957A?T; p.N986I) in the cyclic nucleotide gated channel ß1 (CNGB1) gene predicted to have a deleterious effect and absent in 720 control chromosomes was detected in one case in which conventional genetic screening had failed to detect mutations. The detection of known and novel retinitis pigmentosa mutations in this study establishes high-throughput DNA sequencing with DNA pooling as an effective diagnostic tool for heterogeneous genetic diseases.
Resumo:
Objective: To test the hypothesis that atopic diseases in early life are associated with a reduced risk (protection) for the development of type 1 diabetes in childhood.