969 resultados para Flow cytometry-based in vitro MN assay
Resumo:
Mood stabilising drugs such as lithium (LiCl) and valproic acid (VPA) are the first line agents for treating conditions such as Bipolar disorder and Epilepsy. However, these drugs have potential developmental effects that are not fully understood. This study explores the use of a simple human neurosphere-based in vitro model to characterise the pharmacological and toxicological effects of LiCl and VPA using gene expression changes linked to phenotypic alterations in cells. Treatment with VPA and LiCl resulted in the differential expression of 331 and 164 genes respectively. In the subset of VPA targeted genes, 114 were downregulated whilst 217 genes were upregulated. In the subset of LiCl targeted genes, 73 were downregulated and 91 were upregulated. Gene ontology (GO) term enrichment analysis was used to highlight the most relevant GO terms associated with a given gene list following toxin exposure. In addition, in order to phenotypically anchor the gene expression data, changes in the heterogeneity of cell subtype populations and cell cycle phase were monitored using flow cytometry. Whilst LiCl exposure did not significantly alter the proportion of cells expressing markers for stem cells/undifferentiated cells (Oct4, SSEA4), neurons (Neurofilament M), astrocytes (GFAP) or cell cycle phase, the drug caused a 1.4-fold increase in total cell number. In contrast, exposure to VPA resulted in significant upregulation of Oct4, SSEA, Neurofilament M and GFAP with significant decreases in both G2/M phase cells and cell number. This neurosphere model might provide the basis of a human-based cellular approach for the regulatory exploration of developmental impact of potential toxic chemicals.
Resumo:
Editorial
Resumo:
The ability to define and manipulate the interaction of peptides with MHC molecules has immense immunological utility, with applications in epitope identification, vaccine design, and immunomodulation. However, the methods currently available for prediction of peptide-MHC binding are far from ideal. We recently described the application of a bioinformatic prediction method based on quantitative structure-affinity relationship methods to peptide-MHC binding. In this study we demonstrate the predictivity and utility of this approach. We determined the binding affinities of a set of 90 nonamer peptides for the MHC class I allele HLA-A*0201 using an in-house, FACS-based, MHC stabilization assay, and from these data we derived an additive quantitative structure-affinity relationship model for peptide interaction with the HLA-A*0201 molecule. Using this model we then designed a series of high affinity HLA-A2-binding peptides. Experimental analysis revealed that all these peptides showed high binding affinities to the HLA-A*0201 molecule, significantly higher than the highest previously recorded. In addition, by the use of systematic substitution at principal anchor positions 2 and 9, we showed that high binding peptides are tolerant to a wide range of nonpreferred amino acids. Our results support a model in which the affinity of peptide binding to MHC is determined by the interactions of amino acids at multiple positions with the MHC molecule and may be enhanced by enthalpic cooperativity between these component interactions.
Resumo:
Angiotensin converting enzyme (ACE) inhibitors lisinopril and ramipril were selected from EMA/480197/2010 and the potassium-sparing diuretic spironolactone was selected from the NHS specials list for November 2011 drug tariff with the view to produce oral liquid formulations providing dosage forms targeting paediatrics. Lisinopril, ramipril and spironolactone were chosen for their interaction with transporter proteins in the small intestine. Formulation limitations such as poor solubility or pH sensitivity needed consideration. Lisinopril was formulated without extensive development as drug and excipients were water soluble. Ramipril and spironolactone are both insoluble in water and strategies combating this were employed. Ramipril was successfully solubilised using low concentrations of acetic acid in a co-solvent system and also via complexation with hydroxypropyl-β-cyclodextrin. A ramipril suspension was produced to take formulation development in a third direction. Spironolactone dosages were too high for solubilisation techniques to be effective so suspensions were developed. A buffer controlled pH for the sensitive drug whilst a precisely balanced surfactant and suspending agent mix provided excellent physical stability. Characterisation, stability profiling and permeability assessment were performed following formulation development. The formulation process highlighted current shortcomings in techniques for taste assessment of pharmaceutical preparations resulting in early stage research into a novel in vitro cell based assay. The formulations developed in the initial phase of the research were used as model formulations investigating microarray application in an in vitro-in vivo correlation for carrier mediated drug absorption. Caco-2 cells were assessed following transport studies for changes in genetic expression of the ATP-binding cassette and solute carrier transporter superfamilies. Findings of which were compared to in vitro and in vivo permeability findings. It was not possible to ascertain a correlation between in vivo drug absorption and the expression of individual genes or even gene families, however there was a correlation (R2 = 0.9934) between the total number of genes with significantly changed expression levels and the predicted human absorption.
Resumo:
This study identifies and investigates the potential use of in-eye trigger mechanisms to supplement the widely available information on release of ophthalmic drugs from contact lenses under passive release conditions. Ophthalmic dyes and surrogates have been successfully employed to investigate how these factors can be drawn together to make a successful system. The storage of a drug-containing lens in a pH lower than that of the ocular environment can be used to establish an equilibrium that favours retention of the drug in the lens prior to ocular insertion. Although release under passive conditions does not result in complete dye elution, the use of mechanical agitation techniques which mimic the eyelid blink action in conjunction with ocular tear chemistry promotes further release. In this way differentiation between passive and triggered in vitro release characteristics can be established. Investigation of the role of individual tear proteins revealed significant differences in their ability to alter the equilibrium between matrix-held and eluate-held dye or drug. These individual experiments were then investigated in vivo using ophthalmic dyes. Complete elution was found to be achievable in-eye; this demonstrated the importance of that fraction of the drug retained under passive conditions and the triggering effect of in-eye conditions on the release process. Understanding both the structure-property relationship between drug and material and in-eye trigger mechanisms, using ophthalmic dyes as a surrogate, provides the basis of knowledge necessary to design ocular drug delivery vehicles for in-eye release in a controllable manner.
Resumo:
Long-term management plans for restoration of natural flow conditions through the Everglades increase the importance of understanding potential nutrient impacts of increased freshwater delivery on Florida Bay biogeochemistry. Planktonic communities respond quickly to changes in water quality, thus spatial variability in community composition and relationships to nutrient parameters must be understood in order to evaluate future downstream impacts of modifications to Everglades hydrology. Here we present initial results combining flow cytometry analyses of phytoplankton and bacterial populations (0.1–50 μm size fraction) with measurements of δ13C and δ15N composition and dissolved inorganic nutrient concentrations to explore proxies for planktonic species assemblage compositions and nutrient cycling. Particulate organic material in the 0.1–50 μm size fraction was collected from five stations in Northeastern and Western Florida Bay to characterize spatial variability in species assemblage and stable isotopic composition. A dense bloom of the picocyanobacterium, Synechococcus elongatus, was observed at Western Florida Bay sites. Smaller Synechococcus sp. were present at Northeast sites in much lower abundance. Bacteria and detrital particles were also more abundant at Western Florida Bay stations than in the northeast region. The highest abundance of detritus occurred at Trout Creek, which receives freshwater discharge from the Everglades through Taylor Slough. In terms of nutrient availability and stable isotopic values, the S. elongatus population in the Western bay corresponded to low DIN (0.5 μM NH 4 + ; 0.2 μM NO 3 − ) concentrations and depleted δ15N signatures ranging from +0.3 to +0.8‰, suggesting that the bloom supported high productivity levels through N2-fixation. δ15N values from the Northeast bay were more enriched (+2.0 to +3.0‰), characteristic of N-recycling. δ13C values were similar for all marine Florida Bay stations, ranging from −17.6 to −14.4‰, however were more depleted at the mangrove ecotone station (−25.5 to −22.3‰). The difference in the isotopic values reflects differences in carbon sources. These findings imply that variations in resource availability and nutrient sources exert significant control over planktonic community composition, which is reflected by stable isotopic signatures.
Resumo:
Increasing useof nanomaterials in consumer products and biomedical applications creates the possibilities of intentional/unintentional exposure to humans and the environment. Beyond the physiological limit, the nanomaterialexposure to humans can induce toxicity. It is difficult to define toxicity of nanoparticles on humans as it varies by nanomaterialcomposition, size, surface properties and the target organ/cell line. Traditional tests for nanomaterialtoxicity assessment are mostly based on bulk-colorimetric assays. In many studies, nanomaterials have found to interfere with assay-dye to produce false results and usually require several hours or days to collect results. Therefore, there is a clear need for alternative tools that can provide accurate, rapid, and sensitive measure of initial nanomaterialscreening. Recent advancement in single cell studies has suggested discovering cell properties not found earlier in traditional bulk assays. A complex phenomenon, like nanotoxicity, may become clearer when studied at the single cell level, including with small colonies of cells. Advances in lab-on-a-chip techniques have played a significant role in drug discoveries and biosensor applications, however, rarely explored for nanomaterialtoxicity assessment. We presented such cell-integrated chip-based approach that provided quantitative and rapid response of cellhealth, through electrochemical measurements. Moreover, the novel design of the device presented in this study was capable of capturing and analyzing the cells at a single cell and small cell-population level. We examined the change in exocytosis (i.e. neurotransmitterrelease) properties of a single PC12 cell, when exposed to CuOand TiO2 nanoparticles. We found both nanomaterials to interfere with the cell exocytosis function. We also studied the whole-cell response of a single-cell and a small cell-population simultaneously in real-time for the first time. The presented study can be a reference to the future research in the direction of nanotoxicity assessment to develop miniature, simple, and cost-effective tool for fast, quantitative measurements at high throughput level. The designed lab-on-a-chip device and measurement techniques utilized in the present work can be applied for the assessment of othernanoparticles' toxicity, as well.
Development and validation of a rapid, aldehyde dehydrogenase bright-based cord blood potency assay.
Resumo:
Banked, unrelated umbilical cord blood provides access to hematopoietic stem cell transplantation for patients lacking matched bone marrow donors, yet 10% to 15% of patients experience graft failure or delayed engraftment. This may be due, at least in part, to inadequate potency of the selected cord blood unit (CBU). CBU potency is typically assessed before cryopreservation, neglecting changes in potency occurring during freezing and thawing. Colony-forming units (CFUs) have been previously shown to predict CBU potency, defined as the ability to engraft in patients by day 42 posttransplant. However, the CFU assay is difficult to standardize and requires 2 weeks to perform. Consequently, we developed a rapid multiparameter flow cytometric CBU potency assay that enumerates cells expressing high levels of the enzyme aldehyde dehydrogenase (ALDH bright [ALDH(br)]), along with viable CD45(+) or CD34(+) cell content. These measurements are made on a segment that was attached to a cryopreserved CBU. We validated the assay with prespecified criteria testing accuracy, specificity, repeatability, intermediate precision, and linearity. We then prospectively examined the correlations among ALDH(br), CD34(+), and CFU content of 3908 segments over a 5-year period. ALDH(br) (r = 0.78; 95% confidence interval [CI], 0.76-0.79), but not CD34(+) (r = 0.25; 95% CI, 0.22-0.28), was strongly correlated with CFU content as well as ALDH(br) content of the CBU. These results suggest that the ALDH(br) segment assay (based on unit characteristics measured before release) is a reliable assessment of potency that allows rapid selection and release of CBUs from the cord blood bank to the transplant center for transplantation.
Resumo:
Abstract - This study investigates the effect of solid dispersions prepared from of polyethylene glycol (PEG) 3350 and 6000 Da alone or combined with the non-ionic surfactant Tween 80 on the solubility and dissolution rate of a poorly soluble drug eprosartan mesylate (ESM) in attempt to improve its bioavailability following its oral administration.
INTRODUCTION
ESM is a potent anti-hypertension [1]. It has low water solubility and is classified as a Class II drug as per the Biopharmaceutical Classification Systems (BCS) leading to low and variable oral bioavailability (approximately 13%). [2]. Thus, improving ESM solubility and/or dissolution rate would eventually improve the drug bioavailability. Solid dispersion is widely used technique to improve the water solubility of poorly water-soluble drugs employing various biocompatible polymers. In this study, we aimed to enhance the solubility and dissolution of EMS employing solid dispersion (SD) formulated from two grades of poly ethylene glycol (PEG) polymers (i.e. PEG 3350 & PEG 6000 Da) either individually or in combination with Tween 80.
MATERIALS AND METHODS
ESM SDs were prepared by solvent evaporation method using either PEG 3350 or PEG 6000 at various (drug: polymer, w/w) ratios 1:1, 1:2, 1:3, 1:4, 1:5 alone or combined with Tween 80 added at fixed percentage of 0.1 of drug by weight?. Physical mixtures (PMs) of drug and carriers were also prepared at same ratios. Drug solid dispersions and physical mixtures were characterized in terms of drug content, drug dissolution using dissolution apparatus USP II and assayed using HPLC method. Drug dissolution enhancement ratio (ER %) from SD in comparison to the plain drug was calculated. Drug-polymer interactions were evaluated using Differential Scanning Calorimetry (DSC) and FT-IR.
RESULTS AND DISCUSSION
The in vitro solubility and dissolution studies showed SDs prepared using both polymers produced a remarkable improvement (p<0.05) in comparison to the plain drug which reached around 32% (Fig. 1). The dissolution enhancement ratio was polymer type and concentration-dependent. Adding Tween 80 to the SD did not show further dissolution enhancement but reduced the required amount of the polymer to get the same dissolution enhancement. The DSC and FT-IR studies indicated that using SD resulted in transformation of drug from crystalline to amorphous form.
CONCLUSIONS
This study indicated that SDs prepared by using both polymers i.e. PEG 3350 and PEG 6000 improved the in-vitro solubility and dissolution of ESM remarkably which may result in improving the drug bioavailability in vivo.
Acknowledgments
This work is a part of MSc thesis of O.M. Ali at the Faculty of Pharmacy, Aleppo University, Syria.
REFERENCES
[1] Ruilope L, Jager B: Eprosartan for the treatment of hypertension. Expert Opin Pharmacother 2003; 4(1):107-14
[2] Tenero D, Martin D, Wilson B, Jushchyshyn J, Boike S, Lundberg, D, et al. Pharmacokinetics of intravenously and orally administered Eprosartan in healthy males: absolute bioavailability and effect of food. Biopharm Drug Dispos 1998; 19(6): 351- 6.
Resumo:
BACKGROUND AND OBJECTIVES: Minimal residual disease (MRD) studies are useful in multiple myeloma (MM). However, the definition of the best technique and clinical utility are still unresolved issues. The aim of this study was to analyze and compare the clinical utility of MRD studies in MM with two different techniques: allelic-specific oligonucleotide real-time quantitative PCR (ASO-RQ-PCR), and flow cytometry (FCM). DESIGN AND METHODS: Bone marrow samples from 32 MM patients who had achieved complete response after transplantation were evaluated by ASO-RQ-PCR, using TaqMan technology, and multiparametric FCM. RESULTS: ASO-RQ-PCR was only applicable in 75% of patients for a variety of technical reasons, while FCM was applicable in up to 90%. Therefore, simultaneous PCR/FCM analysis was possible in only 24 patients. The number of residual tumor cells identified by both techniques was very similar (mean=0.29%, range=0.001-1.61%, correlation coefficient=0.861). However, RQ-PCR was able to detect residual myelomatous cells in 17 patients while FCM only did so in 11; thus, 6 cases were FCM negative but PCR positive, all of them displaying a very low number of clonal cells (median=0.014%, range=0.001-0.11). Using an MRD threshold of 0.01% (10(-4)) two risk groups with significantly different progression-free survival could be identified by either PCR (34 vs. 15m, p=0.04) or FCM (27 vs. 10m, p=0.05). INTERPRETATION AND CONCLUSIONS: Although MRD evaluation by ASO-RQ-PCR is slightly more sensitive and specific than FCM, it is applicable in a lower proportion of MM patients and is more time-consuming, while both techniques provide similar prognostic information.
Resumo:
Gastrointestinal helminths are a major constraint to small ruminants in extensive husbandry systems of tropical regions. Yet, unavailability, high prices, side effects, and development of parasite resistance often limit the use of synthetic anthelmintics. Traditional medicinal plants might be an effective low-cost alternative. Therefore the in vitro anthelmintic activity of leaf extracts of the ligneous plants Capparis decidua, Salsola foetida, Suaeda fruticosa, Haloxylon salicornicum, and Haloxylon recurvum from Cholistan, Pakistan, was investigated against adult worms of Haemonchus contortus, Trichuris ovis, and Paramphistomum cervi. Various concentrations (from 7.8 to 500 mg dry matter ml^(−1)) of three extracts (aqueous, methanol, and aqueous-methanol) of each plant were tested at different time intervals for their anthelmintic activity via adult motility assay. Plant species (p<=0.01), extract type (p<=0.001), parasite species (p<=0.001), extract concentration (p<=0.001), time of exposure (p<=0.001) and their interactions (p<=0.001) affected the number of immobile or dead helminths. The 50% lethal concentration (LC_(50)) values indicated that the methanol and aqueous-methanol extracts of C. decidua, H. recurvum, and H. salicornicum as well as the methanol extract of S. fruticosa have the potential to be developed into plant-based remedies against the studied helminths. Further studies are needed to investigate the in vivo anthelmintic activity of these extracts, in order to develop effective, cheap and locally available anthelmintics for pastoralists in Cholistan and neighbouring desert regions.
Resumo:
The architectural transcription factor HMGA2 is abundantly expressed during embryonic development. In several malignant neoplasias including prostate cancer, high re-expression of HMGA2 is correlated with malignancy and poor prognosis. The let-7 miRNA family is described to regulate HMGA2 negatively. The balance of let-7 and HMGA2 is discussed to play a major role in tumour aetiology. To further analyse the role of HMGA2 in prostate cancer a stable and highly reproducible in vitro model system is precondition. Herein we established a canine CT1258-EGFP-HMGA2 prostate cancer cell line stably overexpressing HMGA2 linked to EGFP and in addition the reference cell line CT1258-EGFP expressing solely EGFP to exclude EGFP-induced effects. Both recombinant cell lines were characterised by fluorescence microscopy, flow cytometry and immunocytochemistry. The proliferative effect of ectopically overexpressed HMGA2 was determined via BrdU assays. Comparative karyotyping of the derived and the initial CT1258 cell lines was performed to analyse chromosome consistency. The impact of the ectopic HMGA2 expression on its regulator let-7a was analysed by quantitative real-time PCR. Fluorescence microscopy and immunocytochemistry detected successful expression of the EGFP-HMGA2 fusion protein exclusively accumulating in the nucleus. Gene expression analyses confirmed HMGA2 overexpression in CT1258-EGFP-HMGA2 in comparison to CT1258-EGFP and native cells. Significantly higher let-7a expression levels were found in CT1258-EGFP-HMGA2 and CT1258-EGFP. The BrdU assays detected an increased proliferation of CT1258-HMGA2-EGFP cells compared to CT1258-EGFP and native CT1258. The cytogenetic analyses of CT1258-EGFP and CT1258-EGFP-HMGA2 resulted in a comparable hyperdiploid karyotype as described for native CT1258 cells. To further investigate the impact of recombinant overexpressed HMGA2 on CT1258 cells, other selected targets described to underlie HMGA2 regulation were screened in addition. The new fluorescent CT1258-EGFP-HMGA2 cell line is a stable tool enabling in vitro and in vivo analyses of the HMGA2-mediated effects on cells and the development and pathogenesis of prostate cancer.
Resumo:
Endothelial dysfunction and impaired endothelial regenerative capacity play a key role in the pathogenesis of cardiovascular disease, which is one of the major causes of mortality in chronic kidney disease (CKD) patients. Circulating endothelial cells (CEC) may be an indicator of vascular damage, while circulating endothelial progenitor cells (EPC) may be a biomarker for vascular repair. However, the simultaneously evaluation of CEC and EPC circulating levels and its relation were not previously examined in CKD population. A blood sample (18ml) of healthy subjects (n=10), early CKD (n=10) and advanced CKD patients (n=10) was used for the isolation of early and late EPCs, CECs, and hematopoietic cells, identified by flow cytometry (BD FACSCanto™ II system) using a combination of fluorochrome-conjugated primary antibodies: CD31-PE, CD45-APC Cy7, CD34-FITC, CD117-PerCp Cy5.5, CD133-APC, CD146-Pacific Blue, and CD309-PECy7. Exclusion of dead cells was done according to a fixable viability dye staining. This eightcolor staining flow cytometry optimized protocol allowed us to accurate simultaneously identify EPCs, CECs and hematopoietic cells. In addition, it was also possible to distinguish the two subpopulations of EPCs, early and late EPCs subpopulation, by CD45intCD31+CD34+CD117-CD133+CD309-CD146- and CD45intCD31+CD34+CD117-CD133-CD309+CD146- multiple labeling, respectively. Moreover, the identification of CECs and hematopoietic cells was performed by CD45-CD31+CD34-/lowCD117-CD133-CD309-CD146+ and CD34+CD117+, respectively. The levels of CECs were non-significantly increased in early CKD (312.06 ± 91.34) and advanced CKD patients (191.43±49.86) in comparison with control group (103.23±24.13). By contrast, the levels of circulating early EPCs were significantly reduced in advanced CKD population (17.03±3.23) in comparison with early CKD (32.31±4.97), p=0.04 and control group (36.25 ± 6.16), p=0.03. In addition the levels of late EPCs were significantly reduced in both advanced (6.60±1.89), p=0.01, and early CKD groups (8.42±2.58), p=0.01 compared with control group (91.54±29.06). These results were accompanied by a dramatically reduction in the recruitment, differentiation and regenerative capacity indexes in CKD population. Taken together, these results suggest an imbalance in the process of endothelial repairment in CKD population, and further propose that the indexes of recruitment, differentiation and regenerative capacity of EPCs, may help to select the patients to benefit from guiding intervention strategies to improve cardiovascular health by inducing vascular protection.
Resumo:
Objectives This study was an in-vitro evaluation of different brands of paracetamol and cotrimoxazole tablets, used or found in Malawi, based on Pharmacopoeia standards, in order to ascertain the existence and extent of substandard medicines in Malawi and to give an overview of their distribution in the public and private sectors. Methodology A cross-sectional analytical study was conducted using 11 samples each of paracetamol and cotrimoxazole tablets. Stratified random sampling was used to collect samples. Samples were analyzed using HPLC and Spectrophometric methods as outlined in the BP-2007 and USP-32 at the National Drug Quality Control Laboratory (NDQCL)-Lilongwe (under Pharmacy Medicines and Poisons Board-PMPB) and Orient Pharma Co. Ltd of Taiwan. The results were analyzed using Epi Info. Results and discussion Fifty percent of samples (n=22) were not registered in the country by the PMPB as required by the PMP Act with the majority of those coming from public health facilities. All paracetamol and cotrimoxazole samples complied with identification tests using spectrophotometric and HPLC method. Overall, 27.3% of samples failed to meet the BP-2007 standards for Active Ingredient content, while 22.7% of the samples failed the Friability test. The results from Malawi are similar in magnitude to those within surrounding countries in Africa. Conclusion This pilot study provides objective evidence to show that substandard and unregistered paracetamol and cotrimoxazole are present and being used in Malawi, and thus posing a considerable hazard to public health in Malawi. PMPB, together with the Ministry of Health, must continue to develop a quality assurance system to ensure that medicines are randomly and routinely checked.
Resumo:
Increasing useof nanomaterials in consumer products and biomedical applications creates the possibilities of intentional/unintentional exposure to humans and the environment. Beyond the physiological limit, the nanomaterialexposure to humans can induce toxicity. It is difficult to define toxicity of nanoparticles on humans as it varies by nanomaterialcomposition, size, surface properties and the target organ/cell line. Traditional tests for nanomaterialtoxicity assessment are mostly based on bulk-colorimetric assays. In many studies, nanomaterials have found to interfere with assay-dye to produce false results and usually require several hours or days to collect results. Therefore, there is a clear need for alternative tools that can provide accurate, rapid, and sensitive measure of initial nanomaterialscreening. Recent advancement in single cell studies has suggested discovering cell properties not found earlier in traditional bulk assays. A complex phenomenon, like nanotoxicity, may become clearer when studied at the single cell level, including with small colonies of cells. Advances in lab-on-a-chip techniques have played a significant role in drug discoveries and biosensor applications, however, rarely explored for nanomaterialtoxicity assessment. We presented such cell-integrated chip-based approach that provided quantitative and rapid response of cellhealth, through electrochemical measurements. Moreover, the novel design of the device presented in this study was capable of capturing and analyzing the cells at a single cell and small cell-population level. We examined the change in exocytosis (i.e. neurotransmitterrelease) properties of a single PC12 cell, when exposed to CuOand TiO2 nanoparticles. We found both nanomaterials to interfere with the cell exocytosis function. We also studied the whole-cell response of a single-cell and a small cell-population simultaneously in real-time for the first time. The presented study can be a reference to the future research in the direction of nanotoxicity assessment to develop miniature, simple, and cost-effective tool for fast, quantitative measurements at high throughput level. The designed lab-on-a-chip device and measurement techniques utilized in the present work can be applied for the assessment of othernanoparticles' toxicity, as well.^