833 resultados para Flexor Muscles
Resumo:
Bibliographical footnotes.
Resumo:
Austin
Resumo:
Earlier eds. have title: The anatomy of the human body.
Resumo:
Many studies have identified changes in trunk muscle recruitment in clinical low back pain (LBP). However, due to the heterogeneity of the LBP population these changes have been variable and it has been impossible to identify a cause-effect relationship. Several studies have identified a consistent change in the feed-forward postural response of transversus abdominis (TrA), the deepest abdominal muscle, in association with arm movements in chronic LBP. This study aimed to determine whether the feedforward recruitment of the trunk muscles in a postural task could be altered by acute experimentally induced LBP. Electromyographic (EMG) recordings of the abdominal and paraspinal muscles were made during arm movements in a control trial, following the injection of isotonic (non-painful) and hypertonic (painful) saline into the longissimus muscle at L4, and during a 1-h follow-up. Movements included rapid arm flexion in response to a light and repetitive arm flexion-extension. Temporal and spatial EMG parameters were measured. The onset and amplitude of EMG of most muscles was changed in a variable manner during the period of experimentally induced pain. However, across movement trials and subjects the activation of TrA was consistently reduced in amplitude or delayed. Analyses in the time and frequency domain were used to confirm these findings. The results suggest that acute experimentally induced pain may affect feedforward postural activity of the trunk muscles. Although the response was variable, pain produced differential changes in the motor control of the trunk muscles, with consistent impairment of TrA activity.
Resumo:
The use of botulinum neurotoxins for the treatment of muscle hyperactivity and spasticity disorders has been remarkably successful, owing to the abilities of the toxins to elicit prolonged localized paralysis and the rarity of serious adverse effects. However, botulinum toxins are the most deadly protein toxins known, and existing antidotes possess limited effectiveness. Paradoxically, in situ, the intoxicated motoneuron does not die. It reacts by emanating a sprouting network known to implement new functional synapses, leading to resumption of neurotransmission. Recent studies have highlighted ways of accelerating this natural recovery process to overcome paralysis successfully. Developing new therapeutic strategies and treatments for botulism will require more research into the molecular understanding of this 'naturally occurring' recovery process.
Resumo:
The purpose of this study was to examine the spatio-temporal activation of the sternocleidomastoid (SCM) and cervical extensor (CE) muscles with respect to the deltoid muscle onset during rapid voluntary upper limb movement in healthy volunteers. The repeatability and reliability of the spatio-temporal aspects of the myoelectric signals were also examined. Ten subjects performed bilateral and unilateral rapid upper limb flexion, abduction and extension in response to a visual stimulus. EMG onsets and normalised root mean square (nRMS) values were calculated for the SCM and CE muscles. Subjects attended three testing sessions over non-consecutive days allowing the repeatability and reliability of these measures to be assessed. The SCM and CE muscles demonstrated feed-forward activation (activation within 50 ms of deltoid onset) during rapid arm movements in all directions. The sequence and magnitude of neck muscle activation displayed directional specificity, however, the neck flexor and extensor muscles displayed co-activation during all perturbations. EMG onsets demonstrated high repeatability in terms of repeated measure precision (nSEM in the range 1.9-5.7%). This was less evident for the repeatability of nRMS values. The results of this study provide a greater understanding of cervical neuromotor control strategies. During bilateral and unilateral upper limb perturbations, the SCM and CE muscles demonstrate feed-forward co-activation. It seems apparent that feed-forward activation of neck muscles is a mechanism necessary to achieve stability for the visual and vestibular systems, whilst ensuring stabilisation and protection of the cervical spine. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
There has been little investigation into whether or not differences exist in the nature of physical impairment associated with neck pain of whiplash and insidious origin. This study examined the neck flexor synergy during performance of the cranio-cervical flexion test, a test targeting the action of the deep neck flexors. Seventy-five volunteer subjects participated in this study and were equally divided between Group 1, asymptomatic control subjects, Group 2, subjects with insidious onset neck pain and Group 3, subjects with neck pain following a whiplash injury. The cranio-cervical flexion test was performed in five progressive stages of increasing cranio-cervical flexion range. Subjects' performance was guided by feedback from a pressure sensor inserted behind the neck which monitored the slight flattening of the cervical lordosis which occurs with the contraction of longus colli. Myoelectric signals (EMG) were detected from the muscles during performance of the test. The results indicated that both the insidious onset neck pain and whiplash groups had higher measures of EMG signal amplitude (normalized root mean square) in the sternocleidomastoid during each stage of the test compared to the control subjects (all P
Resumo:
The pelvic floor muscles (PFM) are part of the trunk stability mechanism. Their function is interdependent with other muscles of this system. They also contribute to continence, elimination, sexual arousal and intra-abdominal pressure. This paper outlines some aspects of function and dysfunction of the PFM complex and describes the contribution of other trunk muscles to these processes. Muscle pathophysiology of stress urinary incontinence (SUI) is described in detail. The innovative rehabilitation programme for SUI presented here utilizes abdominal muscle action to initiate tonic PFM activity. Abdominal muscle activity is then used in PFM strengthening, motor relearning for functional expiratory actions and finally impact training. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
Pain changes postural activation of the trunk muscles. The cause of these changes is not known but one possibility relates to the information processing requirements and the stressful nature of pain. This study investigated this possibility by evaluating electromyographic activity (EMG) of the deep and superficial trunk muscles associated with voluntary rapid arm movement. Data were collected from control trials, trials during low back pain (LBP) elicited by injection of hypertonic saline into the back muscles, trials during a non-painful attention-demanding task, and during the same task that was also stressful. Pain did not change the reaction time (RT) of the movement, had variable effects on RT of the superficial trunk muscles, but consistently increased RT of the deepest abdominal muscle. The effect of the attention-demanding task was opposite: increased RT of the movement and the superficial trunk muscles but no effect on RT of the deep trunk muscles. Thus, activation of the deep trunk muscles occurred earlier relative to the movement. When the attention-demanding task was made stressful, the RT of the movement and superficial trunk muscles was unchanged but the RT of the deep trunk muscles was increased. Thus, the temporal relationship between deep trunk muscle activation and arm movement was restored. This means that although postural activation of the deep trunk muscles is not affected when central nervous system resources are limited, it is delayed when the individual is also under stress. However, a non-painful attention-demanding task does not replicate the effect of pain on postural control of the trunk muscles even when the task is stressful.
Resumo:
Despite the importance of the deep intrinsic spinal muscles for trunk control, few studies have investigated their activity during human locomotion or how this may change with speed and mode of locomotion. Furthermore, it has not been determined whether the postural and respiratory functions, of which these muscles take part, can be coordinated when locomotor demands are increased. EMG recordings of abdominal and paraspinal muscles were made in seven healthy subjects using fine-wire and surface electrodes. Measurements were also made of respiration and gait parameters. Recordings were made for 10s as subjects walked on a treadmill at 1 and 2 ms(-1) and ran at 2, 3, 4 and 5 ms(-1). Unlike the superficial muscles, transversus abdominis was active tonically throughout the gait cycle with all tasks, except running at speeds of 3 ms(-1) and greater. All other muscles were recruited in a phasic manner. The relative duration of these bursts of activity was influenced by speed and/or mode of locomotion. Activity of all abdominal muscles, except rectus abdominis (RA), was modulated both for respiration and locomotor-related functions but this activity was affected by the speed and mode of locomotion. This study provides evidence that the deep abdominal muscles are controlled independently of the other trunk muscles. Furthermore, the pattern of recruitment of the trunk muscles and their respiratory and postural coordination is dependent on the speed and mode of locomotion. (C) 2003 Published by Elsevier B.V.
Resumo:
Objective: Accurate neuromuscular control of the patellofemoral joint is important in knee joint mechanics. Strategies to coordinate the vasti muscles, such as motor unit synchronization, may simplify control of patellar tracking. This study investigated motor unit synchronization between vastus medialis (VM) and lateralis (VL). Methods: Electromyographic (EMG) recordings of single motor unit action potentials (MUAPs) were made from VM and single- and multi-unit recordings were made from VL. Synchronization was quantified from peaks in the cross-correlogram generated from single MUAP pairs in VL and VM. The proportion of motor units in VM with synchronized firing in VL was also quantified from peaks in averages of multiunit VL EMG triggered from the VM MUAP. Results: A high degree of synchronization of motor unit firing between VM and VL was identified. Results were similar for cross-correlation (similar to 45% of cases) and triggered averages (similar to 41% of cases). Conclusions: The data suggest that synchronization between VM and VL is higher than expected. Agreement between traditional cross-correlation and triggered averaging methods suggest that this new technique may provide a more clinically viable method to quantify synchronization. Significance: High synchronization between VM and VL may provide a solution to simplify control of the mechanically unstable patellofemoral joint. (c) 2005 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.
Resumo:
Background. Older adults typically exhibit dramatic reductions in the rate of force development and deficits in the execution of rapid coordinated movements. The purpose of the current study was to investigate the association between the reduced rate of force development exhibited by older adults and the ability to coordinate groups of muscles. Methods. The performance of a visually guided aiming task that required the generation of isometric torque about the elbow joint was compared in 10 young adults (age range, 19 to 29 years) and 10 older adults (age range, 65 to 80 years). Participants were required to exert isometric torque in flexion, extension, pronation, or supination, or in combinations of these directions, to reach a target in minimum time. Surface electromyograms were obtained from the biceps brachii, triceps brachii, brachioradialis, and flexor carpi radialis. Results. Older participants exhibited slower target acquisition times compared with young participants (p < .05), with the extent of the differences between the groups varying markedly between target locations. Conclusions. The impairment in performance, although partially attributable to a general decline in the ability to produce force rapidly, was also affected by the requirements for muscular coordination. At the neuromuscular level, differences between the young and the elderly were expressed most prominently in the bifunctional muscle biceps brachii and in certain temporal aspects of muscular coordination.