973 resultados para Fisheries Management
Resumo:
Cobia (Rachycentron canadum) is a pelagic, migratory species with a transoceanic distribution in tropical and subtropical waters. Recreational fishing pressure on Cobia in the United States has increased substantially during the last decade, especially in areas of its annual inshore aggregations, making this species potentially susceptible to overfishing. Although Cobia along the Atlantic and Gulf coasts of the southeastern United States are currently managed as a single fishery, the genetic composition of Cobias in these areas is unclear. On the basis of a robust microsatellite data set from collections along the U.S. Atlantic coast (2008–09), offshore groups were genetically homogenous. However, the 2 sampled inshore aggregations (South Carolina and Virginia) were genetically distinct from each other, as well as from the offshore group. The recapture of stocked fish within their release estuary 2 years after release indicates that some degree of estuarine fidelity occurs within these inshore aggregations and supports the detection of their unique genetic structure at the population level. These results complement the observed high site fidelity of Cobias in South Carolina and support a recent study that confirms that Cobia spawn in the inshore aggregations. Our increased understanding of Cobia life history will be beneficial for determining the appropriate scale of fishery management for Cobia.
Resumo:
A review of the significant contributions in the peer-reviewed literature indicates that the discarding of marine fish known as bycatch remains one of the most significant problem facing fisheries managers. Bycatch has negative affects on marine biodiversity, is ripe with ethical and moral issues surrounding the waste of life from increased juvenile fish mortality, hinders commercial profitability and recreational satisfaction, increases management costs, and results in socio-cultural problems and conflicts. While appearing to have a simple conservation engineering solution, reducing or eliminating bycatch in marine fishing operations given the presently existing regulated open access management environment is demonstrated to actually be so complex that its effects can appear to be counter-intuitive. An ecosystem simulation model that explicitly incorporates the human and biological dimensions is used to evaluate proposed bycatch reduction regulations for two fishing fleets exploiting three out of seven species of fish, each with ten cohorts, in two resource areas. One of the fishing fleets is divided into two components representing commercial fishermen and recreational anglers. The seven fish species represent predator, prey, and competitor behaviors and one stock is treated as an endangered species. The results displayed in a series of figures demonstrate the potential unintended effects of simplistic management approaches and the need for a holistic and comprehensive approach to bycatch management. That is, an ecosystem model that explicitly incorporates socio-cultural and biophysical attributes into a common framework allows the magnitude and direction of behavioral responses to be predicted based on changes in governance or biophysical constraints to determine if management goals and objectives have been obtained through the use of quantitative metrics.
Resumo:
Bycatch, or the unintended capture of fish, marine mammals, sea turtles, and seabirds by fishing gear, occurs to some degree in most fisheries. The recently released National Marine Fisheries Service’s (NMFS) U.S. National Bycatch Report provides information on bycatch in U.S. commercial fisheries by fishery and species. The report also provides national statistics in the form of national bycatch ratio and a national bycatch estimate. We describe the methods used to develop these statistics and compare them to similar studies. We conclude that the national bycatch ratio and national bycatch estimates developed by NMFS represent the best available information on bycatch in U.S. fisheries. However, given changes in bycatch management over time, as well as inter-annual variability in bycatch levels and a high percentage of fisheries for which data on bycatch are not currently available, we recommend that NMFS continue to support bycatch data collection and reporting efforts to improve the quality and quantity of bycatch data and estimates available to fisheries managers and scientists over time. This will enable NMFS to meet its requirements for bycatch reporting under the Magnuson-Stevens Act (MSA), as well as requirements for bycatch minimization under the MSA, Marine Mammal Protection Act, and Endangered Species Act.
Resumo:
In 2006, the National Marine Fisheries Service, NOAA, initiated development of a national bycatch report that would provide bycatch estimates for U.S. commercial fisheries at the fishery and species levels for fishes, marine mammals, sea turtles, and seabirds. As part of this project, the need to quantify the relative quality of available bycatch data and estimation methods was identified. Working collaboratively with fisheries managers and scientists across the nation, a system of evaluation was developed. Herein we describe the development of this system (the “tier system”), its components, and its application. We also discuss the value of the tier system in allowing fisheries managers to identify research needs and efficiently allocate limited resources toward those areas that will result in the greatest improvement to bycatch data and estimation quality.
Resumo:
Results of recent seabird bycatch studies in the International Commission for the Conservation of Atlantic Tunas Convention Area were combined to estimate total seabird bycatch of pelagic longline fishing in the Atlantic Ocean, and bycatch per selected species. Available studies do not apply to the full spatial and temporal extent of the fishing effort, so assumptions were made to account for missing information. Over the 4 years from 2003 to 2006 the total seabird bycatch estimate was 48,500. Results indicate that about 57% of the pelagic longline seabird bycatch was albatrosses (Diomedea, Phoebastria, Thalassarche, Phoebetria spp.). This mortality is at a level to cause concern for the smaller and more vulnerable albatross populations in the region. Variation in annual seabird bycatch was caused by variation in total fishing effort, and movement of effort away from areas of higher seabird bycatch rates.
Resumo:
In July 2007, a mandatory Federal observer program was implemented to characterize the U.S. Gulf of Mexico penaeid shrimp (Farfantepenaeus aztecus, F. duorarum, and Litopenaeus setiferus) fishery. In June 2008, the program expanded to include the South Atlantic penaeid and rock shrimp, Sicyonia spp., fisheries. Data collected from 10,206 tows during 5,197 sea days of observations were analyzed by geographical area and target species. The majority of tows (~70%) sampled were off the coasts of Texas and Louisiana. Based on total hours towed, the highest concentrated effort occurred off South Texas and southwestern Florida. Gear information, such as net characteristics, bycatch reduction devices, and turtle excluder devices were fairly consistent among areas and target species. By species categories, finfish comprised the majority (≥57%) of the catch composition in the Gulf of Mexico and South Atlantic penaeid shrimp fisheries, while in the South Atlantic rock shrimp fishery the largest component (41%) was rock shrimp. Bycatch to shrimp ratios were lower than reported in previous studies for the Gulf of Mexico penaeid shrimp fishery. These decreased ratios may be attributed to several factors, notably decreased shrimp effort and higher shrimp catch per unit of effort (CPUE) in recent years. CPUE density surface plots for several species of interest illustrated spatial differences in distribution. Hot Spot Analyses for shrimp (penaeid and rock) and bycatch species identified areas with significant clustering of high or low CPUE values. Spatial and temporal distribution of protected species interactions were documented.
Resumo:
The Biscayne Bay bait (1986–2005) and food (1989–2005) fisheries for pink shrimp were examined using dealer-reported individual vessel-trip landings data, separated by waterbody code to represent only catches from Biscayne Bay. Annual landings varied little during the 1980’s and early 1990’s, and landings of the bait shrimp fishery exceeded those of the food shrimp fishery. The number of trips and landings in both fisheries increased from the late 1990’s through 2002 and food shrimp landings exceeded landings of bait shrimp; landings in both fisheries decreased sharply in 2003. Landings in both fisheries increased in 2004 and 2005, but the increase in food shrimp landings was stronger. Annual catch per trip was much lower in the bait fishery than the food fishery. Each fishery exploited shrimp of a different size. The bait fishery targeted shrimp less than 19 mm carapace length (CL), whereas the food fishery caught shrimp greater than 19 mm CL. We compared monthly bait shrimp catch per unit of effort (CPUE) from the fishery to an estimate of shrimp density from a fishery-independent sampling effort over a 3-yr period and found a strong statistical relationship with the density estimate lagged by 3 mo. The relationship supported the use of bait shrimp fishery CPUE as an index of abundance in upcoming assessments of the effect of a massive water-management-based ecosystem restoration project on pink shrimp in Biscayne Bay. Project implementation will affect freshwater inflows to the bay and salinity patterns. An abundance index with a lengthy pre-implementation history that can be carried into the operational phase of the restoration project will be invaluable in assessing project effects and protecting an important fishery resource of Biscayne Bay. The bait shrimp fishery can provide a continuing index of shrimp abundance from late 1986 forward.
Resumo:
The Age and Growth Program at the Alaska Fisheries Science Center is tasked with providing age data in order to improve the basic understanding of the ecology and fisheries dynamics of Alaskan fish species. The primary focus of the Age and Growth Program is to estimate ages from otoliths and other calcified structures for age-structured modeling of commercially exploited stocks; however, the program has recently expanded its interests to include numerous studies on topics ranging from age estimate validation to the growth and life history of non-target species. Because so many applications rely upon age data and particularly upon assurances as to their accuracy and precision, the Age and Growth Program has developed this practical guide to document the age determination of key groundfish species from Alaskan waters. The main objective of this manual is to describe techniques specific to the age determination of commercially and ecologically important species studied by the Age and Growth Program. The manual also provides general background information on otolith morphology, dissection, and preparation, as well as descriptions of methods used to measure precision and accuracy of age estimates. This manual is intended not only as a reference for age readers at the AFSC and other laboratories, but also to give insight into the quality of age estimates to scientists who routinely use such data.