808 resultados para Fish tagging
Resumo:
The objective of this study was to estimate genetic parameters for survival and weight of Nile tilapia (Oreochromis niloticus), farmed in cages and ponds in Brazil, and to predict genetic gain under different scenarios. Survival was recorded as a binary response (dead or alive), during harvest time in the 2008 grow-out period. Genetic parameters were estimated using a Bayesian mixed linear-threshold animal model via Gibbs sampling. The breeding population consisted of 2,912 individual fish, which were analyzed together with the pedigree of 5,394 fish. The heritabilities estimates, with 95% posterior credible intervals, for tagging weight, harvest weight and survival were 0.17 (0.09-0.27), 0.21 (0.12-0.32) and 0.32 (0.22-0.44), respectively. Credible intervals show a 95% probability that the true genetic correlations were in a favourable direction. The selection for weight has a positive impact on survival. Estimated genetic gain was high when selecting for harvest weight (5.07%), and indirect gain for tagging weight (2.17%) and survival (2.03%) were also considerable.
Resumo:
To supplement other environmental monitoring programs and to protect the health of people consuming fish from waters within this state, the state of Iowa conducts fish tissue monitoring. Since 1980, the Iowa Department of Natural Resources (IDNR), the United States Environmental Protection Agency Region VII (U.S. EPA), and the University of Iowa Hygienic Laboratory (UHL) have cooperatively conducted annual statewide collections and analyses of fish for toxic contaminants. Beginning in 1983, this monitoring effort became known as the Regional Ambient Fish Tissue Monitoring Program (RAFT). Currently, the RAFT program is the only statewide fish contaminant-monitoring program in Iowa. Historically, the data generated from the RAFT program have enabled IDNR to document temporal changes in contaminant levels and to identify Iowa lakes and rivers where high levels of contaminants in fish potentially threaten the health of fish-consuming Iowans (see IDNR 2006). The Iowa RAFT monitoring program incorporates four different types of monitoring sites: 1) status, 2) trend, 3) random and 4) follow-up. New for 2009 was the one-time inclusion of snapping turtle tissue as part of the Iowa RAFT sampling program.
Resumo:
To supplement other environmental monitoring programs and to protect the health of people consuming fish from waters within this state, the state of Iowa conducts fish tissue monitoring. Since 1980, the Iowa Department of Natural Resources (IDNR), the United States Environmental Protection Agency Region VII (U.S. EPA), and the University of Iowa Hygienic Laboratory (UHL) have cooperatively conducted annual statewide collections and analyses of fish for toxic contaminants. Beginning in 1983, this monitoring effort became known as the Regional Ambient Fish Tissue Monitoring Program (RAFT). Currently, the RAFT program is the only statewide fish contaminant-monitoring program in Iowa. Historically, the data generated from the RAFT program have enabled IDNR to document temporal changes in contaminant levels and to identify Iowa lakes and rivers where high levels of contaminants in fish potentially threaten the health of fish-consuming Iowans (see IDNR 2006). The Iowa RAFT monitoring program incorporates four different types of monitoring sites: 1) status, 2) trend, 3) random and 4) follow-up.
Resumo:
To supplement other environmental monitoring programs and to protect the health of people consuming fish from waters within this state, the state of Iowa conducts fish tissue monitoring. Since 1980, the Iowa Department of Natural Resources (IDNR), the United States Environmental Protection Agency Region VII (U.S. EPA), and the University of Iowa Hygienic Laboratory (UHL) have cooperatively conducted annual statewide collections and analyses of fish for toxic contaminants. Beginning in 1983, this monitoring effort became known as the Regional Ambient Fish Tissue Monitoring Program (RAFT). Currently, the RAFT program is the only statewide fish contaminant-monitoring program in Iowa. Historically, the data generated from the RAFT program have enabled IDNR to document temporal changes in contaminant levels and to identify Iowa lakes and rivers where high levels of contaminants in fish potentially threaten the health of fish-consuming Iowans (see IDNR 2006a). The Iowa RAFT monitoring program incorporates four different types of monitoring sites: 1) status, 2) trend, 3) random and 4) follow-up.
Resumo:
To supplement other environmental monitoring programs and to protect the health of people consuming fish from waters within this state, the state of Iowa conducts fish tissue monitoring. Since 1980, the Iowa Department of Natural Resources (IDNR), the United States Environmental Protection Agency Region VII (U.S. EPA), and the University of Iowa Hygienic Laboratory (UHL) have cooperatively conducted annual statewide collections and analyses of fish for toxic contaminants. Beginning in 1983, this monitoring effort became known as the Regional Ambient Fish Tissue Monitoring Program (the RAFT program). Currently, the RAFT program is the only statewide fish contaminant-monitoring program in Iowa. Historically, the data generated from the RAFT program have enabled IDNR to document temporal changes in contaminant levels and to identify Iowa lakes and rivers where high levels of contaminants in fish potentially threaten the health of fish-consuming Iowans. The Iowa RAFT monitoring program incorporates three different types of monitoring sites: 1) status, 2) trend, and 3) follow-up.
Resumo:
To supplement other environmental monitoring programs and to protect the health of people consuming fish from waters within this state, the state of Iowa conducts fish tissue monitoring. Since 1980, the Iowa Department of Natural Resources (IDNR), the United States Environmental Protection Agency Region VII (U.S. EPA), and the University of Iowa Hygienic Laboratory (UHL) have cooperatively conducted annual statewide collections and analyses of fish for toxic contaminants. Beginning in 1983, this monitoring effort became the Regional Ambient Fish Tissue Monitoring Program (the RAFT program). Currently, the RAFT program is the only statewide fish contaminant-monitoring program in Iowa. Historically, the data generated from the RAFT program have enabled IDNR to document temporal changes in contaminant levels and to identify Iowa lakes and rivers where high levels of contaminants in fish potentially threaten the health of fish-consuming Iowans. The Iowa RAFT monitoring program incorporates three different but equally important types of monitoring sites: 1) status, 2) trend, and 3) follow-up.
Resumo:
To supplement other environmental monitoring programs and to protect the health of people consuming fish from waters within this state, the state of Iowa conducts fish tissue monitoring. Since 1980, the Iowa Department of Natural Resources (IDNR), the United States Environmental Protection Agency Region VII (U.S. EPA), and the University of Iowa Hygienic Laboratory (UHL) have cooperatively conducted annual statewide collections and analyses of fish for toxic contaminants. Beginning in 1983, this monitoring effort became the Regional Ambient Fish Tissue Monitoring Program (the RAFT program). Currently, the RAFT program is the only statewide fish contaminant-monitoring program in Iowa. Historically, the data generated from the RAFT program have enabled IDNR to document temporal changes in contaminant levels and to identify Iowa lakes and rivers where high levels of contaminants in fish potentially threaten the health of Iowans consuming fish. The Iowa RAFT monitoring program incorporates three different but equally important types of monitoring sites: 1) status, 2) trend, and 3) follow-up.
Resumo:
To supplement other environmental monitoring programs and to protect the health of people consuming fish from waters within this state, the state of Iowa conducts fish tissue monitoring. Since 1980, the Iowa Department of Natural Resources (IDNR), the United States Environmental Protection Agency Region VII (U.S. EPA), and the University of Iowa Hygienic Laboratory (UHL) have cooperatively conducted annual statewide collections and analyses of fish for toxic contaminants. Beginning in 1983, this monitoring effort became the Regional Ambient Fish Tissue Monitoring Program (the RAFT program). Currently, the RAFT program is the only statewide fish contaminant-monitoring program in Iowa. Historically, the data generated from the RAFT program have enabled IDNR to document temporal changes in contaminant levels and to identify Iowa lakes and rivers where high levels of contaminants in fish potentially threaten the health of fish consuming Iowans. The Iowa RAFT monitoring program incorporates three different but equally important types of monitoring sites: 1) status, 2) trend, and 3) follow-up.
Resumo:
To supplement other environmental monitoring programs and to protect the health of people consuming fish from waters within this state, the state of Iowa conducts fish tissue monitoring. Since 1980, the Iowa Department of Natural Resources (IDNR), the United States Environmental Protection Agency Region VII (U.S. EPA), and the University of Iowa Hygienic Laboratory (UHL) have cooperatively conducted annual statewide collections and analyses of fish for toxic contaminants. Beginning in 1983, this monitoring effort became the Regional Ambient Fish Tissue Monitoring Program (the RAFT program). Currently, the RAFT program is the only statewide fish contaminant-monitoring program in Iowa. Historically, the data generated from the RAFT program have enabled IDNR to document temporal changes in contaminant levels and to identify Iowa lakes and rivers where high levels of contaminants in fish potentially threaten the health of fish consuming Iowans.
Resumo:
BACKGROUND: Recent data suggest that beta-blockers can be beneficial in subgroups of patients with chronic heart failure (CHF). For metoprolol and carvedilol, an increase in ejection fraction has been shown and favorable effects on the myocardial remodeling process have been reported in some studies. We examined the effects of bisoprolol fumarate on exercise capacity and left ventricular volume with magnetic resonance imaging (MRI) and applied a novel high-resolution MRI tagging technique to determine myocardial rotation and relaxation velocity. METHODS: Twenty-eight patients (mean age, 57 +/- 11 years; mean ejection fraction, 26 +/- 6%) were randomized to bisoprolol fumarate (n = 13) or to placebo therapy (n = 15). The dosage of the drugs was titrated to match that of the the Cardiac Insufficiency Bisoprolol Study protocol. Hemodynamic and gas exchange responses to exercise, MRI measurements of left ventricular end-systolic and end-diastolic volumes and ejection fraction, and left ventricular rotation and relaxation velocities were measured before the administration of the drug and 6 and 12 months later. RESULTS: After 1 year, heart rate was reduced in the bisoprolol fumarate group both at rest (81 +/- 12 before therapy versus 61 +/- 11 after therapy; P <.01) and peak exercise (144 +/- 20 before therapy versus 127 +/- 17 after therapy; P <.01), which indicated a reduction in sympathetic drive. No differences were observed in heart rate responses in the placebo group. No differences were observed within or between groups in peak oxygen uptake, although work rate achieved was higher (117.9 +/- 36 watts versus 146.1 +/- 33 watts; P <.05) and exercise time tended to be higher (9.1 +/- 1.7 minutes versus 11.4 +/- 2.8 minutes; P =.06) in the bisoprolol fumarate group. A trend for a reduction in left ventricular end-diastolic volume (-54 mL) and left ventricular end-systolic volume (-62 mL) in the bisoprolol fumarate group occurred after 1 year. Ejection fraction was higher in the bisoprolol fumarate group (25.0 +/- 7 versus 36.2 +/- 9%; P <.05), and the placebo group remained unchanged. Most changes in volume and ejection fraction occurred during the latter 6 months of treatment. With myocardial tagging, insignificant reductions in left ventricular rotation velocity were observed in both groups, whereas relaxation velocity was reduced only after bisoprolol fumarate therapy (by 39%; P <.05). CONCLUSION: One year of bisoprolol fumarate therapy resulted in an improvement in exercise capacity, showed trends for reductions in end-diastolic and end-systolic volumes, increased ejection fraction, and significantly reduced relaxation velocity. Although these results generally confirm the beneficial effects of beta-blockade in patients with chronic heart failure, they show differential effects on systolic and diastolic function.
Resumo:
BACKGROUND AND AIMS: Fish oil (FO) supplementation prevents the development of obesity and insulin resistance, and upregulate the expression of UCP3 in skeletal muscle in rodents. This may represent indirect evidence that FO promotes fat oxidation and/or alter energy efficiency. The aim of this study was to evaluate whether such effects can be observed in humans. The metabolic effects of FO were assessed during exercise in order to obtain a direct measurement of energy efficiency. METHODS: Eight healthy male volunteers were studied with and without supplementation with 7.2 g/day FO (including 1.1 g/day eicosopentaenoic acid and 0.7 g/day decosahexaenoic acid) during 14 days. Their VO(2 max) was measured on cycle ergometer. Thereafter, energy metabolism (substrate oxidation, energy expenditure and energy efficiency) was assessed during a 30 min cycling exercise at 50% VO(2 max) performed 2 h 30 after a standardized, high carbohydrate breakfast. RESULTS: VO(2 max) was 38.6+/-2.2 after FO and 38.4+/-2.0 (mL x kg(-1) x min(-1)) in control conditions (NS). Basal plasma glucose, insulin and NEFA concentrations, and energy metabolism were similar with FO and in controls. During exercise, the increases in plasma NEFA concentrations, energy expenditure, glucose and lipid oxidation, and the decreases in glycaemia and insulinemia were not altered by FO intake. Energy efficiency was 22.4+/-0.6% after FO vs 21.8+/-0.7% in controls. In order to ascertain that the absence of effects of FO was not due to consumption of a carbohydrate meal immediately before exercise, 4 of the 8 subjects were re-studied in fasting conditions, FO also failed to alter energy efficiency in this subset of studies. CONCLUSION: FO supplementation did not significantly alter energy metabolism and energy efficiency during exercise in healthy humans.
Resumo:
The World Wide Web, the world¿s largest resource for information, has evolved from organizing information using controlled, top-down taxonomies to a bottom up approach that emphasizes assigning meaning to data via mechanisms such as the Social Web (Web 2.0). Tagging adds meta-data, (weak semantics) to the content available on the web. This research investigates the potential for repurposing this layer of meta-data. We propose a multi-phase approach that exploits user-defined tags to identify and extract domain-level concepts. We operationalize this approach and assess its feasibility by application to a publicly available tag repository. The paper describes insights gained from implementing and applying the heuristics contained in the approach, as well as challenges and implications of repurposing tags for extraction of domain-level concepts.
Resumo:
The objective of this work was to evaluate the parasitic fauna of hybrid tambacu (Colossoma macropomum x Piaractus mesopotamicus) from fish farms and the host-parasite relationship. A hundred and fourteen fish were collected from four fish farms in Macapá, in the state of Amapá, Brazil, 80.7% of which were infected by: Ichthyophthirius multifiliis (Ciliophora); Piscinoodinium pillulare (Dinoflagellida); Anacanthorus spatulatus, Notozothecium janauachensis, and Mymarothecium viatorum (Monogenoidea); Neoechinorhynchus buttnerae (Acanthocephala); Cucullanus colossomi (Nematoda); Perulernaea gamitanae (Lernaeidae); and Proteocephalidae larvae (Cestoda). A total of 8,136,252 parasites were collected from the examined fish. This is the first record of N. buttnerae, C. colossomi, N. janauachensis, M. viatorum, and Proteocephalidae for hybrid tambacu in Brazil. Ichthyophthirius multifiliis was the most prevalent parasite, whereas endohelminths were the less. A positive correlation was observed between number of I. multifiliis and total length and weight of fish, as well as between number of P. gamitanae and total length. The infection by I. multifiliis had association with the parasitism by Monogenoidea. Low water quality contributes to high parasitism of hybrid tambacu by ectoparasites, which, however, does not influence the relative condition factor of fish.
Resumo:
Peer reviewed