900 resultados para Fire-engines


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In grapheme-color synesthesia, the letter "c" printed in black may be experienced as red, but typically the color red does not trigger the experience of the letter "c." Therefore, at the level of subjective experience, cross-activation is usually unidirectional. However, recent evidence from digit-color synesthesia suggests that at an implicit level bidirectional cross-activation can occur. Here we demonstrate that this finding is not restricted to this specific type of synesthesia. We introduce a new method that enables the investigation of bidirectionality in other types of synesthesia. We found that a group of grapheme-color synesthetes, but not a control group, showed a startle in response to a color-inducing grapheme after a startle response was conditioned to the specific corresponding color. These results implicate that when the startle response was associated with the real color an association between shock and the grapheme was also established. By this mechanism (i.e. implicit cross-activation) the conditioned response to the real color generalized to the synesthetic color. We suggest that parietal brain areas are responsible for this neural backfiring.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This report presents the development of a Stochastic Knock Detection (SKD) method for combustion knock detection in a spark-ignition engine using a model based design approach. Knock Signal Simulator (KSS) was developed as the plant model for the engine. The KSS as the plant model for the engine generates cycle-to-cycle accelerometer knock intensities following a stochastic approach with intensities that are generated using a Monte Carlo method from a lognormal distribution whose parameters have been predetermined from engine tests and dependent upon spark-timing, engine speed and load. The lognormal distribution has been shown to be a good approximation to the distribution of measured knock intensities over a range of engine conditions and spark-timings for multiple engines in previous studies. The SKD method is implemented in Knock Detection Module (KDM) which processes the knock intensities generated by KSS with a stochastic distribution estimation algorithm and outputs estimates of high and low knock intensity levels which characterize knock and reference level respectively. These estimates are then used to determine a knock factor which provides quantitative measure of knock level and can be used as a feedback signal to control engine knock. The knock factor is analyzed and compared with a traditional knock detection method to detect engine knock under various engine operating conditions. To verify the effectiveness of the SKD method, a knock controller was also developed and tested in a model-in-loop (MIL) system. The objective of the knock controller is to allow the engine to operate as close as possible to its border-line spark-timing without significant engine knock. The controller parameters were tuned to minimize the cycle-to-cycle variation in spark timing and the settling time of the controller in responding to step increase in spark advance resulting in the onset of engine knock. The simulation results showed that the combined system can be used adequately to model engine knock and evaluated knock control strategies for a wide range of engine operating conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ethanol-gasoline fuel blends are increasingly being used in spark ignition (SI) engines due to continued growth in renewable fuels as part of a growing renewable portfolio standard (RPS). This leads to the need for a simple and accurate ethanol-gasoline blends combustion model that is applicable to one-dimensional engine simulation. A parametric combustion model has been developed, integrated into an engine simulation tool, and validated using SI engine experimental data. The parametric combustion model was built inside a user compound in GT-Power. In this model, selected burn durations were computed using correlations as functions of physically based non-dimensional groups that have been developed using the experimental engine database over a wide range of ethanol-gasoline blends, engine geometries, and operating conditions. A coefficient of variance (COV) of gross indicated mean effective pressure (IMEP) correlation was also added to the parametric combustion model. This correlation enables the cycle combustion variation modeling as a function of engine geometry and operating conditions. The computed burn durations were then used to fit single and double Wiebe functions. The single-Wiebe parametric combustion compound used the least squares method to compute the single-Wiebe parameters, while the double-Wiebe parametric combustion compound used an analytical solution to compute the double-Wiebe parameters. These compounds were then integrated into the engine model in GT-Power through the multi-Wiebe combustion template in which the values of Wiebe parameters (single-Wiebe or double-Wiebe) were sensed via RLT-dependence. The parametric combustion models were validated by overlaying the simulated pressure trace from GT-Power on to experimentally measured pressure traces. A thermodynamic engine model was also developed to study the effect of fuel blends, engine geometries and operating conditions on both the burn durations and COV of gross IMEP simulation results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This report is a dissertation proposal that focuses on the energy balance within an internal combustion engine with a unique coolant-based waste heat recovery system. It has been predicted by the U.S. Energy Information Administration that the transportation sector in the United States will consume approximately 15 million barrels per day in liquid fuels by the year 2025. The proposed coolant-based waste heat recovery technique has the potential to reduce the yearly usage of those liquid fuels by nearly 50 million barrels by only recovering even a modest 1% of the wasted energy within the coolant system. The proposed waste heat recovery technique implements thermoelectric generators on the outside cylinder walls of an internal combustion engine. For this research, one outside cylinder wall of a twin cylinder 26 horsepower water-cooled gasoline engine will be implemented with a thermoelectric generator surrogate material. The vertical location of these TEG surrogates along the water jacket will be varied along with the TEG surrogate thermal conductivity. The aim of this proposed dissertation is to attain empirical evidence of the impact, including energy distribution and cylinder wall temperatures, of installing TEGs in the water jacket area. The results can be used for future research on larger engines and will also assist with proper TEG selection to maximize energy recovery efficiencies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The U.S. Renewable Fuel Standard mandates that by 2022, 36 billion gallons of renewable fuels must be produced on a yearly basis. Ethanol production is capped at 15 billion gallons, meaning 21 billion gallons must come from different alternative fuel sources. A viable alternative to reach the remainder of this mandate is iso-butanol. Unlike ethanol, iso-butanol does not phase separate when mixed with water, meaning it can be transported using traditional pipeline methods. Iso-butanol also has a lower oxygen content by mass, meaning it can displace more petroleum while maintaining the same oxygen concentration in the fuel blend. This research focused on studying the effects of low level alcohol fuels on marine engine emissions to assess the possibility of using iso-butanol as a replacement for ethanol. Three marine engines were used in this study, representing a wide range of what is currently in service in the United States. Two four-stroke engine and one two-stroke engine powered boats were tested in the tributaries of the Chesapeake Bay, near Annapolis, Maryland over the course of two rounds of weeklong testing in May and September. The engines were tested using a standard test cycle and emissions were sampled using constant volume sampling techniques. Specific emissions for two-stroke and four-stroke engines were compared to the baseline indolene tests. Because of the nature of the field testing, limited engine parameters were recorded. Therefore, the engine parameters analyzed aside from emissions were the operating relative air-to-fuel ratio and engine speed. Emissions trends from the baseline test to each alcohol fuel for the four-stroke engines were consistent, when analyzing a single round of testing. The same trends were not consistent when comparing separate rounds because of uncontrolled weather conditions and because the four-stroke engines operate without fuel control feedback during full load conditions. Emissions trends from the baseline test to each alcohol fuel for the two-stroke engine were consistent for all rounds of testing. This is due to the fact the engine operates open-loop, and does not provide fueling compensation when fuel composition changes. Changes in emissions with respect to the baseline for iso-butanol were consistent with changes for ethanol. It was determined iso-butanol would make a viable replacement for ethanol.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective for this thesis is to outline a Performance-Based Engineering (PBE) framework to address the multiple hazards of Earthquake (EQ) and subsequent Fire Following Earthquake (FFE). Currently, fire codes for the United States are largely empirical and prescriptive in nature. The reliance on prescriptive requirements makes quantifying sustained damage due to fire difficult. Additionally, the empirical standards have resulted from individual member or individual assembly furnace testing, which have been shown to differ greatly from full structural system behavior. The very nature of fire behavior (ignition, growth, suppression, and spread) is fundamentally difficult to quantify due to the inherent randomness present in each stage of fire development. The study of interactions between earthquake damage and fire behavior is also in its infancy with essentially no available empirical testing results. This thesis will present a literature review, a discussion, and critique of the state-of-the-art, and a summary of software currently being used to estimate loss due to EQ and FFE. A generalized PBE framework for EQ and subsequent FFE is presented along with a combined hazard probability to performance objective matrix and a table of variables necessary to fully implement the proposed framework. Future research requirements and summary are also provided with discussions of the difficulties inherent in adequately describing the multiple hazards of EQ and FFE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A prototype Concept Fire Truck was designed using Autodesk Inventor 3D Design Software. Various pictures of old-time and toy fire trucks were utilized for this project. The prototype was printed using a 3D printer to verify that all parts of the truck would fit and work as intended.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In an ideal world, all instructors of safety and health courses would be masters of course subject matter as well as the theories and practices for effective teaching. In practice, however, most instructors are much stronger in one or the other. This paper provides an example of how some fundamental knowledge from educational experts can be useful for improving a traditional safety course. Is there a problem with the way traditional safety and health (S&H) courses are taught? It is asserted by this author that S&H education, in general, places too much emphasis on acquisition and comprehension of facts at the expense of helping students develop higher-level cognitive abilities. This paper explains the basis for the assertion and reports an experience upgrading a traditional fire protection course to include more assignments involving the higher-level ability known in the education community as synthesis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Traditional courses and textbooks in occupational safety emphasize rules, standards, and guidelines. This paper describes the early stage of a project to upgrade a traditional college course on fire protection by incorporating learning materials to develop the higher-level cognitive ability known as synthesis. Students will be challenged to synthesize textbook information into fault tree diagrams. The paper explains the place of synthesis in Bloom’s taxonomy of cognitive abilities and the utility of fault trees diagrams as a tool for synthesis. The intended benefits for students are: improved abilities to synthesize, a deeper understanding of fire protection practices, ability to construct fault trees for a wide range of undesired occurrences, and perhaps recognition that heavy reliance on memorization is the hard way to learn occupational safety and health.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Analyses of pollen, macrofossils and microscopic charcoal in the sediment of a small sub-alpine lake (Karakol, Kyrgyzstan) provide new data to reconstruct the vegetation history of the Kungey Alatau spruce forest during the late-Holocene, i.e. the past 4,000 years. The pollen data suggest that Picea schrenkiana F. and M. was the dominant tree in this region from the beginning of the record. The pollen record of pronounced die-backs of the forests, along with lithostratigraphical evidence, points to possible climatic cooling (and/or drying) around 3,800 cal year B.P., and between 3,350 and 2,520 cal year B.P., with a culmination at 2,800-2,600 cal B.P., although stable climatic conditions are reported for this region for the past 3,000-4,000 years in previous studies. From 2,500 to 190 cal year B.P. high pollen values of P. schrenkiana suggest rather closed and dense forests under the environmental conditions of that time. A marked decline in spruce forests occurred with the onset of modern human activities in the region from 190 cal year B.P. These results show that the present forests are anthropogenically reduced and represent only about half of their potential natural extent. As P. schrenkiana is a species endemic to the western Tien Shan, it is most likely that its refugium was confined to this region. However, our palaeoecological record is too recent to address this hypothesis thoroughly.