935 resultados para Fire extinction -- Equipment and supplies
Resumo:
Northern Ireland Fire Brigade - 10th and 11th March 2005
Resumo:
Real-time PCR is a widely used tool for the diagnosis of many infectious diseases. However, little information exists about the influences of the different factors involved in PCR on the amplification efficiency. The aim of this study was to analyze the effect of boiling as the DNA preparation method on the efficiency of the amplification process of real-time PCR for the diagnosis of human brucellosis with serum samples. Serum samples from 10 brucellosis patients were analyzed by a SYBR green I LightCycler-based real-time PCR and by using boiling to obtain the DNA. DNA prepared by boiling lysis of the bacteria isolated from serum did not prevent the presence of inhibitors, such as immunoglobulin G (IgG), which were extracted with the template DNA. To identify and confirm the presence of IgG, serum was precipitated to separate and concentrate the IgG and was analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and Western blotting. The use of serum volumes above 0.6 ml completely inhibited the amplification process. The inhibitory effect of IgG in serum samples was not concentration dependent, and it could be eliminated by diluting the samples 1/10 and 1/20 in water. Despite the lack of the complete elimination of the IgG from the template DNA, boiling does not require any special equipment and it provides a rapid, reproducible, and cost-effective method for the preparation of DNA from serum samples for the diagnosis of brucellosis.
Resumo:
Platelet-rich plasma (PRP) is a volume of plasma fraction of autologous blood having platelet concentrations above baseline whole-blood values due to processing and concentration. PRP is used in various surgical fields to enhance soft-tissue and bone healing by delivering supra-physiological concentrations of autologous platelets at the site of tissue damage. These preparations may provide a good cellular source of various growth factors and cytokines, and modulate tissue response to injury. Common clinically available materials for blood preparations combined with a two-step centrifugation protocol at 280g each, to ensure cellular component integrity, provided platelet preparations which were concentrated 2-3 fold over total blood values. Costs were shown to be lower than those of other methods which require specific equipment and high-cost disposables, while safety and traceability can be increased. PRP can be used for the treatment of wounds of all types including burns and also of split-thickness skin graft donor sites, which are frequently used in burn management. The procedure can be standardized and is easy to adapt in clinical settings with minimal infrastructure, thus enabling large numbers of patients to benefit from a form of cellular therapy.
Resumo:
We present a new approach for analyzing the turnover rates of Cretaceous radiolarians recorded in pelagic sequences of western Tethys, The analysis of major extinction-radiation events and the fluctuation of diversity are compared with major paleoceanographic events and variation of diversity in dinoflagellates, calcareous nannoplankton and ammonites. There is an extraordinary correlation between biotic changes and sea level changes, temperatures, O, C and Sr isotopes, phosphorus accumulation rates and anoxic episodes. This reveals a predominantly abiotic control on the evolution of radiolarians. The rate of turnover and the diversity through time of two major orders of radiolarians (nassellarians and spumellarians) exhibits (1) the quasi-parallelism of their diversity curves, excluding a direct competition between them, (2) greater resistance of spumellarians to extinction during the early stage of extinction intervals and (3) a stronger post-extinction recovery of nassellarians. Evolutionary rates of radiolarians can be a good means of monitoring global environmental changes and allowing us to understand more clearly the relationship between plankton evolution, climate and pale oceanographic processes.
Resumo:
The chemistry of today’s concrete mixture designs is complicated by many variables, including multiple sources of aggregate and cements and a plethora of sometimes incompatible mineral and chemical admixtures. Concrete paving has undergone significant changes in recent years as new materials have been introduced into concrete mixtures. Supplementary cementitious materials such as fly ash and ground granulated blast furnace slag are now regularly used. In addition, many new admixtures that were not even available a few years ago now have widespread usage. Adding to the complexity are construction variables such as weather, mix delivery times, finishing practices, and pavement opening schedules. Mixture materials, mix design, and pavement construction are not isolated steps in the concrete paving process. Each affects and is affected by the other in ways that determine overall pavement quality and long-term performance. Equipment and procedures commonly used to test concrete materials and concrete pavements have not changed in decades, leaving serious gaps in our ability to understand and control the factors that determine concrete durability. The concrete paving community needs tests that will adequately characterize the materials, predict interactions, and monitor the properties of the concrete.
Resumo:
Objective To analyze the direct cost of reusable and disposable aprons in a public teaching hospital. Method Cross-sectional study of quantitative approach, focusing on the direct cost of reusable and disposable aprons at a teaching hospital in northern Paraná. The study population consisted of secondary data collected in reports of the cost of services, laundry, materials and supplies division of the institution for the year 2012 Results We identified a lower average cost of using disposable apron when compared to the reusable apron. The direct cost of reusable apron was R$ 3.06, and the steps of preparation and washing were mainly responsible for the high cost, and disposable apron cost was R$ 0.94. Conclusion The results presented are important for hospital managers properly allocate resources and manage costs in hospitals .
Resumo:
Various test methods exist for measuring heat of cement hydration; however, most current methods require expensive equipment, complex testing procedures, and/or extensive time, thus not being suitable for field application. The objectives of this research are to identify, develop, and evaluate a standard test procedure for characterization and quality control of pavement concrete mixtures using a calorimetry technique. This research project has three phases. Phase I was designed to identify the user needs, including performance requirements and precision and bias limits, and to synthesize existing test methods for monitoring the heat of hydration, including device types, configurations, test procedures, measurements, advantages, disadvantages, applications, and accuracy. Phase II was designed to conduct experimental work to evaluate the calorimetry equipment recommended from the Phase I study and to develop a standard test procedure for using the equipment and interpreting the test results. Phase II also includes the development of models and computer programs for prediction of concrete pavement performance based on the characteristics of heat evolution curves. Phase III was designed to study for further development of a much simpler, inexpensive calorimeter for field concrete. In this report, the results from the Phase I study are presented, the plan for the Phase II study is described, and the recommendations for Phase III study are outlined. Phase I has been completed through three major activities: (1) collecting input and advice from the members of the project Technical Working Group (TWG), (2) conducting a literature survey, and (3) performing trials at the CP Tech Center’s research lab. The research results indicate that in addition to predicting maturity/strength, concrete heat evolution test results can also be used for (1) forecasting concrete setting time, (2) specifying curing period, (3) estimating risk of thermal cracking, (4) assessing pavement sawing/finishing time, (5) characterizing cement features, (6) identifying incompatibility of cementitious materials, (7) verifying concrete mix proportions, and (8) selecting materials and/or mix designs for given environmental conditions. Besides concrete materials and mix proportions, the configuration of the calorimeter device, sample size, mixing procedure, and testing environment (temperature) also have significant influences on features of concrete heat evolution process. The research team has found that although various calorimeter tests have been conducted for assorted purposes and the potential uses of calorimeter tests are clear, there is no consensus on how to utilize the heat evolution curves to characterize concrete materials and how to effectively relate the characteristics of heat evolution curves to concrete pavement performance. The goal of the Phase II study is to close these gaps.
Resumo:
The most common trends observed in ammonoid evolution during ecologically stable periods are characterized by an increase of shell curvature (e.g. evolute to involute), by the development of more complex ornamentation (flexuosity of ribbing, appearance of nodes and spines) and by a long term increase of the suture line's fractal dimension. Major evolutionary jumps in ammonoids occur during severe extinction events, and are characterized by the sudden appearance of simple, primitive-looking forms which are similar to remote ancestors of their more complex immediate progenitors. Such forms are interpreted as atavistic. According to this hypothesis, homeomorphic species generated during such sublethal stress events can be separated by several millions of years.
Resumo:
IPI is comprised of three divisions. Private Sector funds are handed over to the General Fund. Traditional Industries and Farms funds are managed by IPI. The auditor of the state provides oversight on policies, procedures, and compliance with state law. Each year, the auditor is responsible for providing the Governor, legislature, Director of Corrections, and the public the findings of their comprehensive audits. IPI has received a clean bill of health and has not been cited for any violations in ten (10) years. IPI operates under the guidance of an advisory board, comprised of seven members. The advisory board meets at least four (4) times per year at a location of the board‟s choice, generally at a different prison each quarter. The board reviews the financials, policies, approves any new private sector ventures and offers comprehensive guidance on issues that will impact correctional industries as well as the public and local businesses. Each member serves for two (2) years and may be re-appointed. IPI has found that retaining board members has helped immensely with the continuity of transition and has afforded IPI with superb leadership and guidance. IPI is 100% self-funding. We receive no appropriations from the general fund. We hire our staff, pay their salaries, and pay the stipend of the offenders. We pay for our raw materials, equipment, and construct our buildings all from the proceeds of our sales. We operate with a revolving fund and retain any earnings at year-ends. The retained earnings are used for expansion of our work programs.
Resumo:
Aims: To assess the potential distribution of an obligate seeder and active pyrophyte, Cistus salviifolius, a vulnerable species in the Swiss Red List; to derive scenarios by changing the fire return interval; and to discuss the results from a conservation perspective. A more general aim is to assess the impact of fire as a natural factor influencing the vegetation of the southern slopes of the Alps. Locations: Alps, southern Switzerland. Methods: Presence-absence data to fit the model were obtained from the most recent field mapping of C. salviifolius. The quantitative environmental predictors used in this study include topographic, climatic and disturbance (fire) predictors. Models were fitted by logistic regression and evaluated by jackknife and bootstrap approaches. Changes in fire regime were simulated by increasing the time-return interval of fire (simulating longer periods without fire). Two scenarios were considered: no fire in the past 15 years; or in the past 35 years. Results: Rock cover, slope, topographic position, potential evapotranspiration and time elapsed since the last fire were selected in the final model. The Nagelkerke R-2 of the model for C. salviifolius was 0.57 and the Jackknife area under the curve evaluation was 0.89. The bootstrap evaluation revealed model robustness. By increasing the return interval of fire by either up to 15 years, or 35 years, the modelled C. salviifolius population declined by 30-40%, respectively. Main conclusions: Although fire plays a significant role, topography and rock cover appear to be the most important predictors, suggesting that the distribution of C. salviifolius in the southern Swiss Alps is closely related to the availability of supposedly competition-free sites, such as emerging bedrock, ridge locations or steep slopes. Fire is more likely to play a secondary role in allowing C. salviifolius to extend its occurrence temporarily, by increasing germination rates and reducing the competition from surrounding vegetation. To maintain a viable dormant seed bank for C. salviifolius, conservation managers should consider carrying out vegetation clearing and managing wild fire propagation to reduce competition and ensure sufficient recruitment for this species.
Resumo:
The objective of this research was to investigate the application of integrated risk modeling to operations and maintenance activities, specifically moving operations, such as pavement testing, pavement marking, painting, snow removal, shoulder work, mowing, and so forth. The ultimate goal is to reduce the frequency and intensity of loss events (property damage, personal injury, and fatality) during operations and maintenance activities. This report includes a literature review that identifies the current and common practices adopted by different state departments of transportation (DOTs) and other transportation agencies for safe and efficient highway operations and maintenance (O/M) activities. The final appendix to the report includes information for eight innovative O/M risk mitigation technologies/equipment and covers the following for these technologies/equipment: Appropriate conditions for deployment Performance/effectiveness, depending on hazard/activity Cost to purchase Cost to operate and maintain Availability (resources and references)
Resumo:
The primary goal of this project is to demonstrate the accuracy and utility of a freezing drizzle algorithm that can be implemented on roadway environmental sensing systems (ESSs). The types of problems related to the occurrence of freezing precipitation range from simple traffic delays to major accidents that involve fatalities. Freezing drizzle can also lead to economic impacts in communities with lost work hours, vehicular damage, and downed power lines. There are means for transportation agencies to perform preventive and reactive treatments to roadways, but freezing drizzle can be difficult to forecast accurately or even detect as weather radar and surface observation networks poorly observe these conditions. The detection of freezing precipitation is problematic and requires special instrumentation and analysis. The Federal Aviation Administration (FAA) development of aircraft anti-icing and deicing technologies has led to the development of a freezing drizzle algorithm that utilizes air temperature data and a specialized sensor capable of detecting ice accretion. However, at present, roadway ESSs are not capable of reporting freezing drizzle. This study investigates the use of the methods developed for the FAA and the National Weather Service (NWS) within a roadway environment to detect the occurrence of freezing drizzle using a combination of icing detection equipment and available ESS sensors. The work performed in this study incorporated the algorithm developed initially and further modified for work with the FAA for aircraft icing. The freezing drizzle algorithm developed for the FAA was applied using data from standard roadway ESSs. The work performed in this study lays the foundation for addressing the central question of interest to winter maintenance professionals as to whether it is possible to use roadside freezing precipitation detection (e.g., icing detection) sensors to determine the occurrence of pavement icing during freezing precipitation events and the rates at which this occurs.
Resumo:
Concrete pavements can be designed and constructed to be as quiet as any other conventional pavement type in use today. This report provides an overview of how this can be done—and done consistently. In order to construct a quieter concrete pavement, the texture must have certain fundamental characteristics. While innovative equipment and techniques have shown promise for constructing quieter pavements in the future, quieter concrete pavements are routinely built today all across the United States using the following standard nominal concrete pavement textures: drag, longitudinal tining, diamond grinding, and even, to limited extent, transverse tining. This document is intended to serve as a guide that describes better practices for designing, constructing, and texturing quieter concrete pavements.
Resumo:
Highway construction is among the most dangerous industries in the US. Internal traffic control design, along with how construction equipment and vehicles interact with the traveling public, have a significant effect on how safe a highway construction work zone can be. An integrated approach was taken to research work-zone safety issues and mobility, including input from many personnel, ranging from roadway designers to construction laborers and equipment operators. The research team analyzed crash data from Iowa work-zone incident reports and Occupational Safety and Health Administration data for the industry in conjunction with the results of personal interviews, a targeted work-zone ingress and egress survey, and a work-zone pilot project.
Resumo:
The twenty-first century Iowa State Capitol contains state-of-the-art fire protection. Sprinklers and smoke detectors are located in every room and all public hallways are equipped with nearby hydrants. The Des Moines Fire Department is able to fight fires at nearly any height. However, on Monday morning, January 4, 1904, the circumstances were much different. By the beginning of 1904, the Capitol Improvement Commission had been working in the Capitol for about two years. The commissioners were in charge of decorating the public areas of the building, installing the artwork in the public areas, installing a new copper roof, re-gilding the dome, replacing windows, and connecting electrical lines throughout. Electrician H. Frazer had been working that morning in Committee Room Number Five behind the House Chamber, drilling into the walls to run electrical wires and using a candle to light his way. The investigating committee determined that Frazer had left his work area and had neglected to extinguish his candle. The initial fire alarm sounded at approximately 10 a.m. Many citizen volunteers came to help the fire department. Capitol employees and state officials also assisted in fighting the fire, including Governor Albert Cummins. The fire was finally brought under control around 6 p.m., although some newspaper accounts at the time reported that the fire continued smoldering for several days. Crampton Linley was the engineer working with the Capitol Improvement Commission. He was in the building at the time of the fire and was credited with saving the building. Linley crawled through attic areas to close doors separating wings of the Capitol, an action which smothered the flames and brought the fire under control. Sadly, Linley did not live long enough to be recognized for his heroism. The day after the fire, while examining the damage, Linley fell through the ceiling of the House Chamber and died instantly from severe head injuries. The flames had burned through the ceiling and caused much of it to collapse to the floor below, while the lower areas of the building had been damaged by smoke and water. Elmer Garnsey was the artist hired by the Capitol Improvement Commission to decorate the public areas of the building. Therefore, he seemed the logical candidate to be given the additional responsibility of redecorating the areas damaged by the fire. Garnsey had a very different vision for the decoration, which is why the House Chamber, the old Supreme Court Room, and the old Agriculture offices directly below the House Chamber have a design that is very different from the areas of the building untouched by the fire.