995 resultados para Fine Chemistry
Resumo:
This paper describes a study to identify those factors which control the persistence of the Subtropical legume Stylosanthes hippocampoides, formerly S. guianensis cv. Oxley (fine stem stylo). The dynamics of S. hippocampoides populations was recorded in permanent quadrats at 2 stocking rates in a grazing study conducted between 1987 and 1992 in south-eastern Queensland. Density of mature plants fluctuated between 10 and 60 plants/m(2) during the 5 years with the major contributing factors being variations in seedling recruitment and survival, which, in turn, reflected the size of the soil seed bank and seasonal rainfall. Plant density was consistently higher at the lower stocking rate of 1 beast/1.5 ha compared with 1 beast/1 ha; however, the effect of stocking rate was minor compared with fluctuation due to seasonal variation in rainfall. The maximum life span of the original plants exceeded 5 years, while the survival of seedling cohorts was strongly impacted by seasonal rainfall. Total exclosure from grazing during summer increased the size of the soil seed bank although a precise time period during summer was not identified, while grazing at the lower stocking pressure produced the same outcome. It was concluded that the large seasonal variation that occurs in S. hippocampoides density is driven by large seasonal variation in seedling recruitment, which, in turn, is influenced by the size of the soil seed bank.
Resumo:
Maize is a highly important crop to many countries around the world, through the sale of the maize crop to domestic processors and subsequent production of maize products and also provides a staple food to subsistance farms in undeveloped countries. In many countries, there have been long-term research efforts to develop a suitable hardness method that could assist the maize industry in improving efficiency in processing as well as possibly providing a quality specification for maize growers, which could attract a premium. This paper focuses specifically on hardness and reviews a number of methodologies as well as important biochemical aspects of maize that contribute to maize hardness used internationally. Numerous foods are produced from maize, and hardness has been described as having an impact on food quality. However, the basis of hardness and measurement of hardness are very general and would apply to any use of maize from any country. From the published literature, it would appear that one of the simpler methods used to measure hardness is a grinding step followed by a sieving step, using multiple sieve sizes. This would allow the range in hardness within a sample as well as average particle size and/or coarse/fine ratio to be calculated. Any of these parameters could easily be used as reference values for the development of near-infrared (NIR) spectroscopy calibrations. The development of precise NIR calibrations will provide an excellent tool for breeders, handlers, and processors to deliver specific cultivars in the case of growers and bulk loads in the case of handlers, thereby ensuring the most efficient use of maize by domestic and international processors. This paper also considers previous research describing the biochemical aspects of maize that have been related to maize hardness. Both starch and protein affect hardness, with most research focusing on the storage proteins (zeins). Both the content and composition of the zein fractions affect hardness. Genotypes and growing environment influence the final protein and starch content and. to a lesser extent, composition. However, hardness is a highly heritable trait and, hence, when a desirable level of hardness is finally agreed upon, the breeders will quickly be able to produce material with the hardness levels required by the industry.
Resumo:
Fine powders consisting of 0.1–0.5 μm size crystallites of CaTiO3 are prepared at 150–200°C by the hydrothermal method starting from hydrated titania gel and reactive calcium oxide suspended as an aqueous slurry in an autoclave. The resulting high-purity CaTiO3 is characterised by TEM, X-ray powder diffraction, chemical analyses and sintering characteristics. The hydrothermally prepared CaTiO3 powders are sinterable to high-density ceramics below 1400°C. The dc conductivity behaviour of the chemically reduced ceramics is presented.
Resumo:
Abstract is not available.
Resumo:
Fine powders consisting of aggregated submicron crystallites of Ba(Ti,Zr)O3 in the complete range of Ti/Zr ratios are prepared at 85–130°C by hydrothermal method, starting from TiO2 + ZrO2 · xH2O mixed gel and Ba(OH)2 solution. The products obtained below 110°C incorporate considerable amounts of H2O and OH− within the lattice. As-prepared BaTiO3 is cubic and converts to tetragonal phase after the heat treatment at 1200°C, accompanied by the loss of residual hydroxyl ions. TEM investgations of the growth features show a transformation of the gel to the crystallite. Ba2+ ions entering the gel produce chemical changes within the gel, followed by dehydration, resulting in a cubic perovskite phase irrespective of Ti/Zr. The sintering properties of these powders to fine-grained, high density ceramics and their dielectric properties are presented.
Resumo:
Fine powders of submicron-sized crystallites of BaTiO3 were prepared at 85–130°C by the hydrothermal method, starting from TiO2.ξH2O gel and Ba(OH)2 solution. The products obtained below 110°C incorporated considerable amounts of H2O and OH− in the lattice. As-prepared BaTiO3 is cubic and converts to the tetragonal phase after heat treatment at 1200°C, accompanied by the loss of residual OH− ions. Hydrothermal reaction of SnO2.ξH2O gel with Ba(OH)2 at 150–260°C gives rise to the hydrated phase, BaSn(OH)6.3H2O, due to the amphoteric nature of SnO2.ξH2O which stabilises Sn(OH)62− anions in basic media. On heating in air or releasing the pressure in situ at 260°C, BaSn(OH)6.3H2O converts to BaSnO3 through an intermediate, BaSnO(OH)4. Solid solutions of Ba(Ti,Sn)O3 are directly formed from (TiO2 + SnO2)..ξH2O gel up to 35 mol% SnO2. At higher Sn contents, the hydrothermal products are mixtures of BaSn(OH)6.3H2O and BaTiO3, which on annealing at 1000°C result in monophasic Ba(Ti,Sn)O3. The sintering characteristics and the dielectric properties of the ceramics prepared out of these fine powders are presented. The dielectric properties of fine-grained Ba(Ti,Sn)O3 ceramics are explained on the basis of the prevailing diffuse phase transition behaviour.
Resumo:
This picture was taken during her last year of high school. The chemistry teacher, Professor Schmigielski was one of Elizabeth's favorite teachers.
Resumo:
Plastic limit of fine-grained soils is conventionally determined in the laboratory by the soil thread rolling method. Many adverse comments have been recorded in the geotechnical engineering literature on the method about its reproducibility and operator dependency. The presen experimental study, which is based on a well-planned and meticulously executed experimental program, critically evaluates the effect of size of the rolled soil thread on the plastic limit of fine-grained soil and the operator dependency of the results. The results have shown that if the plastic limit tests are performed by a trained operator, then consistent results can be obtained and that the effect of size of the rolled soil thread on plastic limit is negligibly small.
Resumo:
The stable isotopes of delta O-18 and delta C-13 in sagittal otolith carbonates were used to determine the stock structure of Grey Mackerel, Scomberomorus semifasciatus. Otoliths were collected from Grey Mackerel at ten locations representing much of their distributional and fisheries range across northern Australia from 2005 to 2007. Across this broad range (similar to 6500 km), fish from four broad locations-Western Australia (S1), Northern Territory and Gulf of Carpentaria (S2, S3, S4, S5, S6, S7), Queensland east coast mid and north sites (S8, S9) and Queensland east coast south site (S10)-had stable isotope values that were significantly different indicating stock separation. Otolith stable isotopes differed more between locations than among years within a location, indicating temporal stability across years. The spatial separation of these populations indicates a complex stock structure across northern Australia. Stocks of S. semifasciatus appear to be associated with large coastal embayments. These results indicate that optimal fisheries management may require a review of the current spatial arrangements, particularly in relation to the evidence of shared stocks in the Gulf of Carpentaria. Furthermore, as the population of S. semifasciatus in Western Australia exhibited high spatial separation from those at all the other locations examined, further research activities should focus on investigating additional locations within Western Australia for an enhanced determination of stock delineation. From the issue entitled "Proceedings of the 4th International Otolith Symposium, 24-28 August 2009, Monterey, California"
Resumo:
This picture was taken during her last year of high school. The chemistry teacher, Professor Schmigielski was one of Elizabeth's favorite teachers.
Resumo:
This picture was taken during her last year of high school. The chemistry teacher, Professor Schmigielski was one of Elizabeth's favorite teachers.
Resumo:
Candidate gene studies have reported CYP19A1 variants to be associated with endometrial cancer and with estradiol (E2) concentrations. We analyzed 2937 single nucleotide polymorphisms (SNPs) in 6608 endometrial cancer cases and 37 925 controls and report the first genome wide-significant association between endometrial cancer and a CYP19A1 SNP (rs727479 in intron 2, P=4.8x10(-11)). SNP rs727479 was also among those most strongly associated with circulating E2 concentrations in 2767 post-menopausal controls (P=7.4x10(-8)). The observed endometrial cancer odds ratio per rs727479 A-allele (1.15, CI=1.11-1.21) is compatible with that predicted by the observed effect on E2 concentrations (1.09, CI=1.03-1.21), consistent with the hypothesis that endometrial cancer risk is driven by E2. From 28 candidate-causal SNPs, 12 co-located with three putative gene-regulatory elements and their risk alleles associated with higher CYP19A1 expression in bioinformatical analyses. For both phenotypes, the associations with rs727479 were stronger among women with a higher BMI (Pinteraction=0.034 and 0.066 respectively), suggesting a biologically plausible gene-environment interaction.
Resumo:
There is an endless quest for new materials to meet the demands of advancing technology. Thus, we need new magnetic and metallic/semiconducting materials for spintronics, new low-loss dielectrics for telecommunication, new multi-ferroic materials that combine both ferroelectricity and ferromagnetism for memory devices, new piezoelectrics that do not contain lead, new lithium containing solids for application as cathode/anode/electrolyte in lithium batteries, hydrogen storage materials for mobile/transport applications and catalyst materials that can convert, for example, methane to higher hydrocarbons, and the list is endless! Fortunately for us, chemistry - inorganic chemistry in particular - plays a crucial role in this quest. Most of the functional materials mentioned above are inorganic non-molecular solids, while much of the conventional inorganic chemistry deals with isolated molecules or molecular solids. Even so, the basic concepts that we learn in inorganic chemistry, for example, acidity/basicity, oxidation/reduction (potentials), crystal field theory, low spin-high spin/inner sphere-outer sphere complexes, role of d-electrons in transition metal chemistry, electron-transfer reactions, coordination geometries around metal atoms, Jahn-Teller distortion, metal-metal bonds, cation-anion (metal-nonmetal) redox competition in the stabilization of oxidation states - all find crucial application in the design and synthesis of inorganic solids possessing technologically important properties. An attempt has been made here to illustrate the role of inorganic chemistry in this endeavour, drawing examples from the literature its well as from the research work of my group.
Resumo:
Genome-wide association studies show strong evidence of association with endometriosis for markers on chromosome 1p36 spanning the potential candidate genes WNT4, CDC42 and LINC00339. WNT4 is involved in development of the uterus, and the expression of CDC42 and LINC00339 are altered in women with endometriosis. We conducted fine mapping to examine the role of coding variants in WNT4 and CDC42 and determine the key SNPs with strongest evidence of association in this region. We identified rare coding variants in WNT4 and CDC42 present only in endometriosis cases. The frequencies were low and cannot account for the common signal associated with increased risk of endometriosis. Genotypes for five common SNPs in the region of chromosome 1p36 show stronger association signals when compared with rs7521902 reported in published genome scans. Of these, three SNPs rs12404660, rs3820282, and rs55938609 were located in DNA sequences with potential functional roles including overlap with transcription factor binding sites for FOXA1, FOXA2, ESR1, and ESR2. Functional studies will be required to identify the gene or genes implicated in endometriosis risk.