941 resultados para Familial component
Resumo:
A model of a phase-separating two-component Langmuir monolayer in the presence of a photoinduced reaction interconverting two components is formulated. An interplay between phase separation, orientational ordering, and reaction is found to lead to a variety of nonequilibrium self-organized patterns, both stationary and traveling. Examples of the patterns, observed in numerical simulations, include flowing droplets, traveling stripes, wave sources, and vortex defects.
Resumo:
A diffusion-limited-aggregation (DLA) model with two components (A and B species) is presented to investigate the structure of the composite deposits. The sticking probability PAB (=PBA) between the different species is introduced into the original DLA model. By using computer simulation it is shown that various patterns are produced with varying the sticking probabilities PAB (=PBA) and PAA (= PBB), where PAA (=PBB) is the sticking probability between the same species. Segregated patterns can be analyzed under the condition PAB < PAA, assumed throughout the paper. With decreasing sticking probability PAB, a clustering of the same species occurs. With sufficiently small values of both sticking probabilities PAB and PAA, the deposit becomes dense and the segregated patterns of the composite deposit show a striped structure. The effect of the concentration on the pattern morphology is also shown.
Traveling waves and nonequilibrium stationary patterns in two-component reactive Langmuir monolayers
Resumo:
A simple kinetic model of a two-component phase-separating Langmuir monolayer with a chemical reaction is proposed. Its analysis and numerical simulations show that nonequilibrium periodic stationary structures and patterns of traveling stripes can spontaneously develop. The nonequilibrium phase diagram of this system is constructed and the properties of the patterns are discussed.
Resumo:
Audit report of the State University of Iowa, Iowa City, Iowa, and its discretely presented component unit as of and for the years ended June 30, 2012 and 2011
Resumo:
Two-component systems (TCSs) allow bacteria to monitor diverse environmental cues and to adjust gene expression accordingly at the transcriptional level. It has been recently recognized that prokaryotes also regulate many genes and operons at a posttranscriptional level with the participation of small, noncoding RNAs which serve to control translation initiation and stability of target mRNAs, either directly by establishing antisense interactions or indirectly by antagonizing RNA-binding proteins. Interestingly, the expression of a subset of these small RNAs is regulated by TCSs and in this way, the small RNAs expand the scope of genetic control exerted by TCSs. Here we review the regulatory mechanisms and biological relevance ofa number of small RNAs under TCS control in Gram-negative and -positive bacteria. These regulatory systems govern, for instance, porin-dependent permeability of the outer membrane, quorum-sensing control of pathogenicity, or biocontrol activity. Most likely, this emerging and rapidly expanding field of molecular microbiology will provide more and more examples in the near future.
Resumo:
OBJECTIVES: This study aimed to identify the genetic defect in a family with idiopathic ventricular fibrillation (IVF) manifesting in childhood and adolescence. BACKGROUND: Although sudden cardiac death in the young is rare, it frequently presents as the first clinical manifestation of an underlying inherited arrhythmia syndrome. Gene discovery for IVF is important as it enables the identification of individuals at risk, because except for arrhythmia, IVF does not manifest with identifiable clinical abnormalities. METHODS: Exome sequencing was carried out on 2 family members who were both successfully resuscitated from a cardiac arrest. RESULTS: We characterized a family presenting with a history of ventricular fibrillation (VF) and sudden death without electrocardiographic or echocardiographic abnormalities at rest. Two siblings died suddenly at the ages of 9 and 10 years, and another 2 were resuscitated from out-of-hospital cardiac arrest with documented VF at ages 10 and 16 years, respectively. Exome sequencing identified a missense mutation affecting a highly conserved residue (p.F90L) in the CALM1 gene encoding calmodulin. This mutation was also carried by 1 of the siblings who died suddenly, from whom DNA was available. The mutation was present in the mother and in another sibling, both asymptomatic but displaying a marginally prolonged QT interval during exercise. CONCLUSIONS: We identified a mutation in CALM1 underlying IVF manifesting in childhood and adolescence. The causality of the mutation is supported by previous studies demonstrating that F90 mediates the direct interaction of CaM with target peptides. Our approach highlights the utility of exome sequencing in uncovering the genetic defect even in families with a small number of affected individuals.
Resumo:
The identification of genetic causes for Mendelian disorders has been based on the collection of multi-incident families, linkage analysis, and sequencing of genes in candidate intervals. This study describes the application of next-generation sequencing technologies to a Swiss kindred presenting with autosomal-dominant, late-onset Parkinson disease (PD). The family has tremor-predominant dopa-responsive parkinsonism with a mean onset of 50.6 ± 7.3 years. Exome analysis suggests that an aspartic-acid-to-asparagine mutation within vacuolar protein sorting 35 (VPS35 c.1858G>A; p.Asp620Asn) is the genetic determinant of disease. VPS35 is a central component of the retromer cargo-recognition complex, is critical for endosome-trans-golgi trafficking and membrane-protein recycling, and is evolutionarily highly conserved. VPS35 c.1858G>A was found in all affected members of the Swiss kindred and in three more families and one patient with sporadic PD, but it was not observed in 3,309 controls. Further sequencing of familial affected probands revealed only one other missense variant, VPS35 c.946C>T; (p.Pro316Ser), in a pedigree with one unaffected and two affected carriers, and thus the pathogenicity of this mutation remains uncertain. Retromer-mediated sorting and transport is best characterized for acid hydrolase receptors. However, the complex has many types of cargo and is involved in a diverse array of biologic pathways from developmental Wnt signaling to lysosome biogenesis. Our study implicates disruption of VPS35 and retromer-mediated trans-membrane protein sorting, rescue, and recycling in the neurodegenerative process leading to PD.
Resumo:
Audit report of Iowa State University of Science and Technology, Ames, Iowa, and its discretely presented component unit as of and for the years ended June 30, 2013 and 2012
Resumo:
Audit report of the State University of Iowa, Iowa City, Iowa, (University of Iowa) and its discretely presented component units as of and for the years ended June 30, 2013 and 2012
Resumo:
The knowledge of the relationship that links radiation dose and image quality is a prerequisite to any optimization of medical diagnostic radiology. Image quality depends, on the one hand, on the physical parameters such as contrast, resolution, and noise, and on the other hand, on characteristics of the observer that assesses the image. While the role of contrast and resolution is precisely defined and recognized, the influence of image noise is not yet fully understood. Its measurement is often based on imaging uniform test objects, even though real images contain anatomical backgrounds whose statistical nature is much different from test objects used to assess system noise. The goal of this study was to demonstrate the importance of variations in background anatomy by quantifying its effect on a series of detection tasks. Several types of mammographic backgrounds and signals were examined by psychophysical experiments in a two-alternative forced-choice detection task. According to hypotheses concerning the strategy used by the human observers, their signal to noise ratio was determined. This variable was also computed for a mathematical model based on the statistical decision theory. By comparing theoretical model and experimental results, the way that anatomical structure is perceived has been analyzed. Experiments showed that the observer's behavior was highly dependent upon both system noise and the anatomical background. The anatomy partly acts as a signal recognizable as such and partly as a pure noise that disturbs the detection process. This dual nature of the anatomy is quantified. It is shown that its effect varies according to its amplitude and the profile of the object being detected. The importance of the noisy part of the anatomy is, in some situations, much greater than the system noise. Hence, reducing the system noise by increasing the dose will not improve task performance. This observation indicates that the tradeoff between dose and image quality might be optimized by accepting a higher system noise. This could lead to a better resolution, more contrast, or less dose.
Resumo:
Muscle stem cells and their progeny play a fundamental role in the regeneration of adult skeletal muscle. We have previously shown that activation of the canonical Wnt/beta-catenin signaling pathway in adult myogenic progenitors is required for their transition from rapidly dividing transient amplifying cells to more differentiated progenitors. Whereas Wnt signaling in Drosophila is dependent on the presence of the co-regulator Legless, previous studies of the mammalian ortholog of Legless, BCL9 (and its homolog, BCL9-2), have not revealed an essential role of these proteins in Wnt signaling in specific tissues during development. Using Cre-lox technology to delete BCL9 and BCL9-2 in the myogenic lineage in vivo and RNAi technology to knockdown the protein levels in vitro, we show that BCL9 is required for activation of the Wnt/beta-catenin cascade in adult mammalian myogenic progenitors. We observed that the nuclear localization of beta-catenin and downstream TCF/LEF-mediated transcription, which are normally observed in myogenic progenitors upon addition of exogenous Wnt and during muscle regeneration, were abrogated when BCL9/9-2 levels were reduced. Furthermore, reductions of BCL9/9-2 inhibited the promotion of myogenic differentiation by Wnt and the normal regenerative response of skeletal muscle. These results suggest a critical role of BCL9/9-2 in the Wnt-mediated regulation of adult, as opposed to embryonic, myogenic progenitors.
Resumo:
Human beings live in symbiosis with billions of microorganisms colonizing mucosal surfaces. The understanding of the mechanisms underlying this fine-tuned intestinal balance has made significant processes during the last decades. We have recently demonstrated that the interaction of SIgA with Gram-positive bacteria is essentially based on Fab-independent, glycan-mediated recognition. Results obtained using mouse hybridoma- and colostrum-derived secretory IgA (SIgA) consistently show that N-glycans present on secretory component (SC) play a crucial role in the process. Natural coating may involve specific Gram-positive cell wall components, which may explain selective recognition at the molecular level. More widely, the existence of these complexes is involved in the modulation of intestinal epithelial cell (IEC) responses in vitro and the formation of intestinal biofilms. Thus, SIgA may act as one of the pillars in homeostatic maintenance of the microbiota in the gut, adding yet another facet to its multiple roles in the mucosal environment.
Failure to thrive in a girl born into a family affected by familial dysalbuminemic hyperthyroxinemia
Resumo:
Autosomal dominant familial dysalbuminemic hyperthyroxinemia (FDH)is characterized by modified human serum albumin (HSA) inducing asubstantially higher affinity for thyroxine (T4). Histidin or prolinsubstitution on residue R218 produces localized conformationalchanges of HSA creating additional room for T4 binding, leadingto 14-20 fold normal total T4 (TT4) levels. Affected individuals areconsidered euthyroid. Our patient is an 18 months-old swiss girl bornto a mother known for the rare R218P mutation in the HSA gene.She presented with severe failure to thrive (height -2.92 SD, weight-3.6 SD), habitual hip dislocation without anatomical anomaly, latefontanelle closing and protruding ears. Psychomotor development isslightly retarded. Thyroid function testing confirmed extremely high TT4(1446.0 nmol/l) levels, which are similar to her brother's values (1534.4nmol/l and 1757.6 nmol/l respectively). Free T4 seems slightly elevated(26 pmol/l), probably due to methodological reasons. TSH (0.92 mU/l),free T3 (4.4 pmol/l) and thyroxin binding globulin (32 mg/l) are withinthe normal range. Her two half-brothers, affected by the samemutation, are now 18.7 (P1) and 16.6 (P2) years old and wereoriginally described by S. Pannain et al. in 2000. Both werecharacterized by growth retardation (-2.1 and -2.2 SD) before the ageof 4 years. P1 has reached a normal adult height (-0.4 SD) and P2has caught up to normal growth (-0.68 SD) with moderate bonematuration delay. Pubertal development and anterior pituitary functionare adequate. Primary growth and developmental retardation in thefirst years of life with adequate catch-up seem to be a distinctcharacteristic in FDH with R218P mutation. Hip dislocation is typicallyseen in other situations associated to thyroid disorders, like Downsyndrome. These findings might be explained by altered early thyroidhormone utilization in children with FDH.