977 resultados para FLUORESCENCE MICROSCOPY


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Recombinational repair of replication forks can occur either to a crossover (XO) or noncrossover (non-XO) depending on Holliday junction resolution. Once the fork is repaired by recombination, PriA is important for restarting these forks in Escherichia coli. PriA mutants are Rec− and UV sensitive and have poor viability and 10-fold elevated basal levels of SOS expression. PriA sulB mutant cells and their nucleoids were studied by differential interference contrast and fluorescence microscopy of 4′,6-diamidino-2-phenylindole-stained log phase cells. Two populations of cells were seen. Eighty four percent appeared like wild type, and 16% of the cells were filamented and had poorly partitioned chromosomes (Par−). To probe potential mechanisms leading to the two populations of cells, mutations were added to the priA sulB mutant. Mutating sulA or introducing lexA3 decreased, but did not eliminate filamentation or defects in partitioning. Mutating either recA or recB virtually eliminated the Par− phenotype. Filamentation in the recB mutant decreased to 3%, but increased to 28% in the recA mutant. The ability to resolve and/or branch migrate Holliday junctions also appeared crucial in the priA mutant because removing either recG or ruvC was lethal. Lastly, it was tested whether the ability to resolve chromosome dimers caused by XOs was important in a priA mutant by mutating dif and the C-terminal portion of ftsK. Mutation of dif showed no change in phenotype whereas ftsK1∷cat was lethal with priA2∷kan. A model is proposed where the PriA-independent pathway of replication restart functions at forks that have been repaired to non-XOs.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We used digital fluorescence microscopy to make real-time observations of anaphase chromosome movement and changes in microtubule organization in spindles assembled in Xenopus egg extracts. Anaphase chromosome movement in these extracts resembled that seen in living vertebrate cells. During anaphase chromosomes moved toward the spindle poles (anaphase A) and the majority reached positions very close to the spindle poles. The average rate of chromosome to pole movement (2.4 microns/min) was similar to earlier measurements of poleward microtubule flux during metaphase. An increase in pole-to-pole distance (anaphase B) occurred in some spindles. The polyploidy of the spindles we examined allowed us to observe two novel features of mitosis. First, during anaphase, multiple microtubule organizing centers migrated 40 microns or more away from the spindle poles. Second, in telophase, decondensing chromosomes often moved rapidly (7-23 microns/min) away from the spindle poles toward the centers of these asters. This telophase chromosome movement suggests that the surface of decondensing chromosomes, and by extension those of intact nuclei, bear minus-end-directed microtubule motors. Preventing the inactivation of Cdc2/cyclin B complexes by adding nondegradable cyclin B allowed anaphase A to occur at normal velocities, but reduced the ejection of asters from the spindles, blocked chromosome decondensation, and inhibited telophase chromosome movement. In the presence of nondegradable cyclin B, chromosome movement to the poles converted bipolar spindles into pairs of independent monopolar spindles, demonstrating the role of sister chromatid linkage in maintaining spindle bipolarity.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

NO causes pulmonary vasodilation in patients with pulmonary hypertension. In pulmonary arterial smooth muscle cells, the activity of voltage-gated K+ (Kv) channels controls resting membrane potential. In turn, membrane potential is an important regulator of the intracellular free calcium concentration ([Ca2+]i) and pulmonary vascular tone. We used patch clamp methods to determine whether the NO-induced pulmonary vasodilation is mediated by activation of Kv channels. Quantitative fluorescence microscopy was employed to test the effect of NO on the depolarization-induced rise in [Ca2+]i. Blockade of Kv channels by 4-aminopyridine (5 mM) depolarized pulmonary artery myocytes to threshold for initiation of Ca2+ action potentials, and thereby increased [Ca2+]i. NO (approximately 3 microM) and the NO-generating compound sodium nitroprusside (5-10 microM) opened Kv channels in rat pulmonary artery smooth muscle cells. The enhanced K+ currents then hyperpolarized the cells, and blocked Ca(2+)-dependent action potentials, thereby preventing the evoked increases in [Ca2+]i. Nitroprusside also increased the probability of Kv channel opening in excised, outside-out membrane patches. This raises the possibility that NO may act either directly on the channel protein or on a closely associated molecule rather than via soluble guanylate cyclase. In isolated pulmonary arteries, 4-aminopyridine significantly inhibited NO-induced relaxation. We conclude that NO promotes the opening of Kv channels in pulmonary arterial smooth muscle cells. The resulting membrane hyperpolarization, which lowers [Ca2+]i, is apparently one of the mechanisms by which NO induces pulmonary vasodilation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In recent years observations at the level of individual atoms and molecules became possible by microscopy and spectroscopy. Imaging of single fluorescence molecules has been achieved but has so far been restricted to molecules in the immobile state. Here we provide methodology for visualization of the motion of individual fluorescent molecules. It is applied to imaging of the diffusional path of single molecules in a phospholipid membrane by using phospholipids carrying one rhodamine dye molecule. For this methodology, fluorescence microscopy was carried to a sensitivity so that single fluorescent molecules illuminated for only 5 ms were resolvable at a signal/noise ratio of 28. Repeated illuminations permitted direct observation of the diffusional motion of individual molecules with a positional accuracy of 30 nm. Such capability has fascinating potentials in bioscience--for example, to correlate biological functions of cell membranes with movements, spatial organization, and stoichiometries of individual components.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Proteasomes are located both in the nuclei and in the cytoplasm of eukaryotic cells. Active transport of these complexes through the nuclear pores has been proposed to be mediated by nuclear localization signals (NLS), which have been found in several of the alpha-type proteasomal subunits. We have tested three different putative NLS sequences from human alpha-type proteasomal subunits (Hsc iota, Hsc9, and Hsc3), as well as a putative NLS-type sequence from the archaeon Thermoplasma acidophilum, for their ability to direct non-nuclear proteins to the nucleus. Synthetic peptides containing these putative NLS sequences were generated and conjugated to large fluorescent reporter molecules: allophycocyanin or fluorescein-labeled bovine serum albumin. The conjugates were introduced into digitonin-permeabilized HeLa and 3T3 cells in the presence of cell lysate and ATP, and nuclear import was monitored by fluorescence microscopy. All three putative NLS sequences from human proteasomal subunits were able to direct the reporter molecules to the nucleus in both cell types, although differences in efficiency were observed. Substitution of threonine for the first lysine residue of the eukaryotic NLS motifs inhibited nuclear import completely. Interestingly, the putative NLS sequence found in T. acidophilum was also functional as a nuclear targeting sequence.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Organelle movement along actin filaments has been demonstrated in dissociated squid axoplasm [Kurznetsov, S. A., Langford, G.M. & Weiss, D. G. (1992) Nature (London) 356, 722-725 and Bearer, E.L., DeGiorgis, J.A., Bodner, R.A., Kao, A.W. & Reese, T.S. (1993) Proc. Natl. Acad. Sci. USA 90, 11252-11256] but has not been shown to occur in intact neurons. Here we demonstrate that intracellular transport occurs along actin filament bundles in intact neuronal growth cones. We used video-enhanced differential interference contrast microscopy to observe intracellular transport in superior cervical ganglion neurons cultured under conditions that enhance the visibility of actin bundles within growth cone lamellipodia. Intracellular particles, ranging in size from < 0.5-1.5 microns, moved along linear structures (termed transport bundles) at an average maximum rate of 0.48 micron/sec. After particle movement had been viewed, cultures were preserved by rapid perfusion with chemical fixative. To determine whether particle transport occurred along actin, we then used fluorescence microscopy to correlate this movement with actin and microtubule distributions in the same growth cones. The observed transport bundles colocalized with actin but not with microtubules. The rates of particle movement and the association of moving particles with actin filament bundles suggest that myosins may participate in the transport of organelles (or other materials) in intact neurons.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In the budding yeast Saccharomyces cerevisiae, the spindle pole body (SPB) serves as the microtubule-organizing center and is the functional analog of the centrosome of higher organisms. By expressing a fusion of a yeast SPB-associated protein to the Aequorea victoria green fluorescent protein, the movement of the SPBs in living yeast cells undergoing mitosis was observed by fluorescence microscopy. The ability to visualize SPBs in vivo has revealed previously unidentified mitotic events. During anaphase, the mitotic spindle has four sequential activities: alignment at the mother-daughter junction, fast elongation, translocation into the bud, and slow elongation. These results indicate that distinct forces act upon the spindle at different times during anaphase.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A capillary electrophoresis system with single-cell biosensors as a detector has been used to separate and identify ligands in complex biological samples. The power of this procedure was significantly increased by introducing antagonists that inhibited the cellular response from selected ligand-receptor interactions. The single-cell biosensor was based on the ligand-receptor binding and G-protein-mediated signal transduction pathways in PC12 and NG108-15 cell lines. Receptor activation was measured as increases in cytosolic free calcium ion concentration by using fluorescence microscopy with the intracellular calcium ion indicator fluo-3-acetoxymethyl ester. Specifically, a mixture of bradykinin (BK) and acetylcholine (ACh) was fractionated and the components were identified by inhibiting the cellular response with icatibant (HOE 140), a selective antagonist to the BK B2 receptor subtype (B2BK), and atropine, an antagonist to muscarinic ACh receptor subtypes. Structurally related forms of BK were also identified based on inhibiting B2BK receptors. Applications of this technique include identification of endogenous BK in a lysate of human hepatocellular carcinoma cells (Hep G2) and screening for bioactivity of BK degradation products in human blood plasma. The data demonstrate that the use of antagonists with a single-cell biosensor separation system aids identification of separated components and receptor subtypes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

As culturas da soja e milho são de grande importância econômica mundial e também para o Brasil, onde a área cultivada com essas duas culturas está estimada em 45.855.900 mil hectares, distribuídas em todos estados produtores conforme suas características. A estimativa da safra mundial de soja em 2015/16 apresentou uma redução na produção global da oleaginosa para 319,0 milhões de ton, volume 1,1 milhão de ton inferior ao levantamento de dezembro de 2015. Ainda assim, trata-se de um volume recorde. Para o milho, a produção global foi de 967,9 milhões de ton, com uma redução no volume de 5,9 milhões de ton em relação ao levantamento realizado em dezembro de 2015. Nessas duas culturas são comumente utilizadas bactérias fixadoras de nitrogênio (BFN), reduzindo ou até mesmo, eliminando a aplicação de adubos nitrogenados. Estudos apontam que a simbiose entre BFN e as culturas soja e milho pode ser otimizada mediante a coinoculação com rizobatérias promotoras de crescimento de plantas (RPCP). Apesar de promissora, o estudo da utilização de BFN em associação com RPCPs é incipiente no Brasil. Assim, o presente trabalho teve como objetivo monitorar, a partir da marcação bacteriana, a interação entre a linhagem de Burkholderia ambifaria (RZ2MS16), uma rizobactéria proveniente do guaranazeiro e previamente descrita como promotora de crescimento em soja e milho e linhagens das espécies Bradyrhizobium japonicum (SEMIA5079), Bradyrhizobium diazoefficiens (SEMIA5080) e Azospirillum brasilense (Ab-v5 e Ab-v6) que são comercialmente utilizadas como bioinoculantes nessas culturas respectivamente. Os efeitos sinergisticos da interação entre RZ2MS16 e bioinoculantes comercias foram avaliados em experimento de casa de vegetação. Também foi avaliado o efeito da coinoculação de bioinculantes com outra rizobactéria proveniente do guaranazeiro, Bacillus sp. (RZ2MS9). As linhagens foram inoculadas separadamente e coinoculadas, sendo melhores resultados observados com a coinoculação das linhagens. As linhagens marcadas com genes de fluorescência selecionadas para estudo de interação foram RZ2MS16, Ab-v5 e SEMIA5080, sendo essa interação observada por microscopia de fluorescência, com também pelo reisolamento das linhagens marcadas. As linhagens RZ2MS16:pNKGFP e Ab-v5: pWM1013 e SEMIA5080:pWM1013 colonizaram todos os nichos avaliados em milho e soja, respectivamente, sendo também caracterizadas como endofíticos. Assim se observa que estudos desta natureza são de grande importância para um melhor entendimento da interação entre bactéria planta e o efeito da coinoculação no melhor desenvolvimento de plantas comercialmente utilizadas.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Variations in the physical deformation of the plasma membrane play a significant role in the sorting and behavior of the proteins that occupy it. Determining the interplay between membrane curvature and protein behavior required the development and thorough characterization of a model plasma membrane with well defined and localized regions of curvature. This model system consists of a fluid lipid bilayer that is supported by a dye-loaded polystyrene nanoparticle patterned glass substrate. As the physical deformation of the supported lipid bilayer is essential to our understanding of the behavior of the protein occupying the bilayer, extensive characterization of the structure of the model plasma membrane was conducted. Neither the regions of curvature in the vicinity of the polystyrene nanoparticles or the interaction between a lipid bilayer and small patches of curved polystyrene are well understood, so the results of experiments to determine these properties are described. To do so, individual fluorescently labeled proteins and lipids are tracked on this model system and in live cells. New methods for analyzing the resulting tracks and ensemble data are presented and discussed. To validate the model system and analytical methods, fluorescence microscopy was used to image a peripheral membrane protein, cholera toxin subunit B (CTB). These results are compared to results obtained from membrane components that were not expected to show an preference for membrane curvature: an individual fluorescently-labeled lipid, lissamine rhodamine B DHPE, and another protein, streptavidin associated with biotin-labeled DHPE. The observed tendency for cholera toxin subunit B to avoid curved regions of curvature, as determined by new and established analytical methods, is presented and discussed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The mammalian retromer protein complex, which consists of three proteins - Vps26, Vps29, and Vps35 - in association with members of the sorting nexin family of proteins, has been implicated in the trafficking of receptors and their ligands within the endosomal/lysosomal system of mammalian cells. A bioinformatic analysis of the mouse genome identified an additional transcribed paralog of the Vps26 retromer protein, which we termed Vps26B. No paralogs were identified for Vps29 and Vps35. Phylogenetic studies indicate that the two paralogs of Vps26 become evident after the evolution of the chordates. We propose that the chordate Vps26-like gene published previously be renamed Vps26A to differentiate it from Vps26B. As for Vps26A, biochemical characterization of Vps26B established that this novel 336 amino acid residue protein is a peripheral membrane protein. Vps26B co-precipitated with Vps35 from transfected cells and the direct interaction between these two proteins was confirmed by yeast 2-hybrid analysis, thereby establishing Vps26B as a subunit of the retromer complex. Within HeLa cells, Vps26B was found in the cytoplasm with low levels at the plasma membrane, while Vps26A was predominantly associated with endosomal membranes. Within A549 cells, both Vps26A and Vps26B co-localized with actin-rich lamellipodia at the cell surface. These structures also co-localized with Vps35. Total internal reflection fluorescence microscopy confirmed the association of Vps26B with the plasma membrane in a stable HEK293 cell line expressing cyan fluorescent protein (CFP)-Vps26B. Based on these observations, we propose that the mammalian retromer complex is located at both endosomes and the plasma membrane in some cell types.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Microencapsulation of cell spheroids in an immunoselective, highly biocompatible, biomembrane offers a way to create viable implantation options in the treatment of insulin-dependent diabetes mellitus (IDDM). Traditionally the encapsulation process has been achieved through the injection/extrusion of alginate/cell mixtures into a calcium chloride solution to produce calcium alginate capsules around the cells. A novel alternative is explored here through a procedure using an emulsion process to produce thin adherent calcium alginate membranes around cell spheroids. In this study, a thorough investigation has been used to establish the emulsion process parameters that are critical to the formation of a coherent alginate coat both on a model spheroid system and subsequently on cell spheroids. Optical and fluorescence microscopy are used to assess the morphology and coherence of the calcium alginate/ poly-L-ornithine/alginate (APA) capsules produced. (c) 2005 Wiley Periodicals, Inc.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Purpose: Meibomian-derived lipid secretions are well characterised but their subsequent fate in the ocular environment is less well understood. Phospholipids are thought to facilitate the interface between aqueous and lipid layers of the tear film and to be involved in ocular lubrication processes. We have extended our previous studies on phospholipid levels in the tear film to encompass the fate of polar and non-polar lipids in progressive accumulation and aging processes on both conventional and silicone-modified hydrogel lenses. This is an important aspect of the developing understanding of the role of lipids in the clinical performance of silicone hydrogels. Method: Several techniques were used to identify lipids in the tear film. Mass-spectrometric methods included Agilent 1100-based liquid chromatography coupled to mass spectrometry (LCMS) and Perkin Elmer gas chromatography mass spectrometry (GCMS). Thin layer chromatography (TLC) was used for separation of lipids on the basis of increasing solvent polarity. Routine assay of lipid extractions from patient-worn lenses was carried out using a Hewlett Packard 1090 liquid chromatograph coupled to both uv and Agilent 1100 fluorescence detection. A range of histological together with optical, and electron microscope techniques was used in deposit analysis. Results: Progressive lipid uptake was assessed in various ways, including: composition changes with wear time, differential lipid penetrate into the lens matrix and, particularly, the extent to which lipids become unextractable as a function of wear time. Solvent-based separation and HPLC gave consistent results indicating that the polarity of lipid classes decreased as follows: phospholipids/fatty acids > triglycerides > cholesterol/cholesteryl esters. Tear lipids were found to show autofluorescence—which underpinned the value of fluorescence microscopy and fluorescence detection coupled with HPLC separation. The most fluorescent lipids were found to be cholesteryl esters; histological techniques coupled with fluorescence microscopy indicated that white spots (’’jelly bumps’’) formed on silicone hydrogel lenses contain a high proportion of cholesteryl esters. Lipid profiles averaged for 30 symptomatic and 30 asymptomatic contact lens wearers were compiled. Peak classes were split into: cholesterol (C), cholesteryl esters (CE), glycerides (G), polar fatty acids/phospholipids (PL). The lipid ratio for ymptomatic/symptomatic was 0.6 ± 0.1 for all classes except one—the cholesterol ratio was 0.2 ± 0.05. Significantly the PL ratio was no different from that of any other class except cholesterol. Chromatography indicated that: lipid polarity decreased with depth of penetration and that lipid extractability decreased with wear time. Conclusions: Meibomian lipid composition differs from that in the tear film and on worn lenses. Although the same broad lipid classes were obtained by extraction from all lenses and all patients studied, quantities vary with wear and material. Lipid extractability diminishes with wear time regardless of the use of cleaning regimes. Dry eye symptoms in contact lens wear are frequently linked to lipid layer behaviour but seem to relate more to total lipid than to specific composition. Understanding the detail of lipid related processes is an important element of improving the clinical performance of materials and care solutions.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Antisense technology is a novel drug discovery method, which provides an essential tool for directly using gene sequence information to rationally design specific inhibitions of mRNA, to treat a wide range of diseases. The efficacy of naked oligodeoxynucleotides (ODNs) is relatively short lived due to rapid degradation in vivo. The entrapment of ODNs within biodegradable sustained-release delivery systems may improve ODN stability and reduce dose required for efficacy. Biodegradable polymer microspheres were evaluated as delivery devices for ODNs and ribozymes. Poly(lactide-co-glycolide) polymers were used due to their biocompatibility and non toxic degradation products. Microspheres were prepared using a double emulsion-deposition method and the formulations characterised. In vitro release profiles were characterised by an initial burst effect during the first 48 hours of release followed by a more sustained release. The release profiles were influenced by microsphere size, copolymer molecular weight, copolymer ratio, ODN loading, ODN length, and ODN chemistry. The serum stability of ODNs was significantly improved when entrapped within polymer microspheres. The cellular association of ODNs entrapped within small spheres (1-2μm) was improved by approximately 20-fold in A431 carcinoma cells compared with free ODNs. Fluorescence microscopy studies showed a more diffuse subcellular distribution when delivered as a microsphere formulation compared with free ODNs, which exhibited the characteristic punctate periplasmic distribution. For in vivo evaluation, polymer microspheres containing fluorescently-labelled ODNs were stereo-taxically administered to the neostriatum of the rat brain. Free ODN resulted in a punctate cellular distribution after 24 hours. In comparison ODN delivered using polymer microspheres were intensely visible in cells 48 hours post administration, and fluorescence appeared to be diffuse covering both cytosolic and nuclear regions. Whole-body autoradiography was also used to evaluate the biodistribution of free tritium labelled ODN and ODN entrapped microspheres, following subcutaneous administration to Balb-C mice. Polymer entrapped ODN gave a similar biodistribution to free ODN. Free ODN was distributed within 24 hours, whereas polymer released ODN was observed still presented in organs and at the site of administration seven days post administration.