841 resultados para FINFET STRUCTURES
Resumo:
We work out a semiclassical theory of shot noise in ballistic n+-i-n+ semiconductor structures aiming at studying two fundamental physical correlations coming from Pauli exclusion principle and long-range Coulomb interaction. The theory provides a unifying scheme which, in addition to the current-voltage characteristics, describes the suppression of shot noise due to Pauli and Coulomb correlations in the whole range of system parameters and applied bias. The whole scenario is summarized by a phase diagram in the plane of two dimensionless variables related to the sample length and contact chemical potential. Here different regions of physical interest can be identified where only Coulomb or only Pauli correlations are active, or where both are present with different relevance. The predictions of the theory are proven to be fully corroborated by Monte Carlo simulations.
Resumo:
A microstructural analysis of silicon-on-insulator samples obtained by high dose oxygen ion implantation was performed by Raman scattering. The samples analyzed were obtained under different conditions thus leading to different concentrations of defects in the top Si layer. The samples were implanted with the surface covered with SiO2 capping layers of different thicknesses. The spectra measured from the as-implanted samples were fitted to a correlation length model taking into account the possible presence of stress effects in the spectra. This allowed quantification of both disorder effects, which are determined by structural defects, and residual stress in the top Si layer before annealing. These data were correlated to the density of dislocations remaining in the layer after annealing. The analysis performed corroborates the existence of two mechanisms that generate defects in the top Si layer that are related to surface conditions during implantation and the proximity of the top Si/buried oxide layer interface to the surface before annealing.
Resumo:
Drosophila melanogaster is a model organism instrumental for numerous biological studies. The compound eye of this insect consists of some eight hundred individual ommatidia or facets, ca. 15 µm in cross-section. Each ommatidium contains eighteen cells including four cone cells secreting the lens material (cornea). High-resolution imaging of the cornea of different insects has demonstrated that each lens is covered by the nipple arrays--small outgrowths of ca. 200 nm in diameter. Here we for the first time utilize atomic force microscopy (AFM) to investigate nipple arrays of the Drosophila lens, achieving an unprecedented visualization of the architecture of these nanostructures. We find by Fourier analysis that the nipple arrays of Drosophila are disordered, and that the seemingly ordered appearance is a consequence of dense packing of the nipples. In contrast, Fourier analysis confirms the visibly ordered nature of the eye microstructures--the individual lenses. This is different in the frizzled mutants of Drosophila, where both Fourier analysis and optical imaging detect disorder in lens packing. AFM reveals intercalations of the lens material between individual lenses in frizzled mutants, providing explanation for this disorder. In contrast, nanostructures of the mutant lens show the same organization as in wild-type flies. Thus, frizzled mutants display abnormal organization of the corneal micro-, but not nano-structures. At the same time, nipples of the mutant flies are shorter than those of the wild-type. We also analyze corneal surface of glossy-appearing eyes overexpressing Wingless--the lipoprotein ligand of Frizzled receptors, and find the catastrophic aberration in nipple arrays, providing experimental evidence in favor of the major anti-reflective function of these insect eye nanostructures. The combination of the easily tractable genetic model organism and robust AFM analysis represents a novel methodology to analyze development and architecture of these surface formations.
Resumo:
We present a study of the influence of atomic order on the relative stability of the bcc and the 18R martensitic structures in a Cu2.96Al0.92Be0.12 crystal. Calorimetric measurements have shown that disorder increases the stability of the 18R phase, contrary to what happens in Cu-Zn-Al alloys for which it is the bcc phase that is stabilized by disordering the system. This different behavior has been explained in terms of a model recently reported. We have also proved that the entropy change at the martensitic transition is independent of the state of atomic order of the crystal, as predicted theoretically. Our results suggest that differences in the vibrational spectrum of the crystal due to different states of atomic order must be equal in the bcc and in the close-packed phases.
Resumo:
We study the Becchi-Rouet-Stora-Tyutin (BRST) structure of a self-interacting antisymmetric tensor gauge field, which has an on-shell null-vector gauge transformation. The Batalin-Vilkovisky covariant general formalism is briefly reviewed, and the issue of on-shell nilpotency of the BRST transformation is elucidated. We establish the connection between the covariant and the canonical BRST formalisms for our particular theory. Finally, we point out the similarities and differences with Wittens string field theory.
Resumo:
Two-dimentional systems of trapped samples of few cold bosonic atoms submitted to strong rotation around the perpendicular axis may be realized in optical lattices and microtraps. We investigate theoretically the evolution of ground state structures of such systems as the rotational frequency Omega increases. Various kinds of ordered structures are observed. In some cases, hidden interference patterns exhibit themselves only in the pair correlation function; in some other cases explicit broken-symmetry structures appear that modulate the density. For N < 10 atoms, the standard scenario, valid for large sytems is absent, and is only gradually recovered as N increases. On the one hand, the Laughlin state in the strong rotational regime contains ordered structures much more similar to a Wigner molecule than to a fermionic quantum liquid. On the other hand, in the weak rotational regime, the possibility to obtain equilibrium states, whose density reveals an array of vortices, is restricted to the vicinity of some critical values of the rotational frequency Omega.
Resumo:
In order to study the connections between Lagrangian and Hamiltonian formalisms constructed from aperhaps singularhigher-order Lagrangian, some geometric structures are constructed. Intermediate spaces between those of Lagrangian and Hamiltonian formalisms, partial Ostrogradskiis transformations and unambiguous evolution operators connecting these spaces are intrinsically defined, and some of their properties studied. Equations of motion, constraints, and arbitrary functions of Lagrangian and Hamiltonian formalisms are thoroughly studied. In particular, all the Lagrangian constraints are obtained from the Hamiltonian ones. Once the gauge transformations are taken into account, the true number of degrees of freedom is obtained, both in the Lagrangian and Hamiltonian formalisms, and also in all the intermediate formalisms herein defined.
Resumo:
This paper presents the predicted flow dynamics from the application of a Reynolds-averaged NavierStokes model to a series of bifurcation geometries with morphologies measured during previous flume experiments. The topography of the bifurcations consists of either plane or bedform-dominated beds which may or may not possess discordance between the two bifurcation distributaries. Numerical predictions are compared with experimental results to assess the ability of the numerical model to reproduce the division of flow into the bifurcation distributaries. The hydrodynamic model predicts: (1) diverting fluxes in the upstream channel which direct water into the distributaries; (2) super-elevation of the free surface induced at the bifurcation edge by pressure differences; and (3) counter-rotating secondary circulation cells which develop upstream of the apex of the bifurcation and move into the downstream channels, with water converging at the surface and diverging at the bed. When bedforms are not present, weak transversal fluxes characterize the upstream channel for almost its entire length, associated with clearly distinguishable secondary circulation cells, although these may be under-estimated by the turbulence model used in the solution. In the bedform dominated case, the same hydrodynamic conditions were not observed, with the bifurcation influence restricted and depth scale secondary circulation cells not forming. The results also demonstrate the dominant effect bed discordance has upon flow division between the two distributaries. Finally, results indicate that in bedform dominated rivers. Consequently, we suggest that sand-bed river bifurcations are more likely to have an influence that extends much further upstream and have a greater impact upon water distribution. This may contribute to observed morphological differences between sand-bedded and gravel-bedded braided river networks. Copyright (C) 2012 John Wiley & Sons, Ltd.
Resumo:
We present a new model of sequential adsorption in which the adsorbing particles experience dipolar interactions. We show that in the presence of these long-range interactions, highly ordered structures in the adsorbed layer may be induced at low temperatures. The new phenomenology is manifest through significant variations of the pair correlation function and the jamming limit, with respect to the case of noninteracting particles. Our study could be relevant in understanding the adsorption of magnetic colloidal particles in the presence of a magnetic field.
Resumo:
River bifurcations are key nodes within braided river systems controlling the flow and sediment partitioning and therefore the dynamics of the river braiding process. Recent research has shown that certain geometrical configurations induce instabilities that lead to downstream mid-channel bar formation and the formation of bifurcations. However, we currently have a poor understanding of the flow division process within bifurcations and the flow dynamics in the downstream bifurcates, both of which are needed to understand bifurcation stability. This paper presents results of a numerical sensitivity experiment undertaken using computational fluid dynamics (CFD) with the purpose of understanding the flow dynamics of a series of idealized bifurcations. A geometric sensitivity analysis is undertaken for a range of channel slopes (0.005 to 0.03), bifurcation angles (22 degrees to 42 degrees) and a restricted set of inflow conditions based upon simulating flow through meander bends with different curvature on the flow field dynamics through the bifurcation. The results demonstrate that the overall slope of the bifurcation affects the velocity of flow through the bifurcation and when slope asymmetry is introduced, the flow structures in the bifurcation are modified. In terms of bifurcation evolution the most important observation appears to be that once slope asymmetry is greater than 0.2 the flow within the steep bifurcate shows potential instability and the potential for alternate channel bar formation. Bifurcation angle also defines the flow structures within the bifurcation with an increase in bifurcation angle increasing the flow velocity down both bifurcates. However, redistributive effects of secondary circulation caused by upstream curvature can very easily counter the effects of local bifurcation characteristics. Copyright (C) 2011 John Wiley & Sons, Ltd.
Resumo:
RÉSUMÉ Cette thèse porte sur le développement de méthodes algorithmiques pour découvrir automatiquement la structure morphologique des mots d'un corpus. On considère en particulier le cas des langues s'approchant du type introflexionnel, comme l'arabe ou l'hébreu. La tradition linguistique décrit la morphologie de ces langues en termes d'unités discontinues : les racines consonantiques et les schèmes vocaliques. Ce genre de structure constitue un défi pour les systèmes actuels d'apprentissage automatique, qui opèrent généralement avec des unités continues. La stratégie adoptée ici consiste à traiter le problème comme une séquence de deux sous-problèmes. Le premier est d'ordre phonologique : il s'agit de diviser les symboles (phonèmes, lettres) du corpus en deux groupes correspondant autant que possible aux consonnes et voyelles phonétiques. Le second est de nature morphologique et repose sur les résultats du premier : il s'agit d'établir l'inventaire des racines et schèmes du corpus et de déterminer leurs règles de combinaison. On examine la portée et les limites d'une approche basée sur deux hypothèses : (i) la distinction entre consonnes et voyelles peut être inférée sur la base de leur tendance à alterner dans la chaîne parlée; (ii) les racines et les schèmes peuvent être identifiés respectivement aux séquences de consonnes et voyelles découvertes précédemment. L'algorithme proposé utilise une méthode purement distributionnelle pour partitionner les symboles du corpus. Puis il applique des principes analogiques pour identifier un ensemble de candidats sérieux au titre de racine ou de schème, et pour élargir progressivement cet ensemble. Cette extension est soumise à une procédure d'évaluation basée sur le principe de la longueur de description minimale, dans- l'esprit de LINGUISTICA (Goldsmith, 2001). L'algorithme est implémenté sous la forme d'un programme informatique nommé ARABICA, et évalué sur un corpus de noms arabes, du point de vue de sa capacité à décrire le système du pluriel. Cette étude montre que des structures linguistiques complexes peuvent être découvertes en ne faisant qu'un minimum d'hypothèses a priori sur les phénomènes considérés. Elle illustre la synergie possible entre des mécanismes d'apprentissage portant sur des niveaux de description linguistique distincts, et cherche à déterminer quand et pourquoi cette coopération échoue. Elle conclut que la tension entre l'universalité de la distinction consonnes-voyelles et la spécificité de la structuration racine-schème est cruciale pour expliquer les forces et les faiblesses d'une telle approche. ABSTRACT This dissertation is concerned with the development of algorithmic methods for the unsupervised learning of natural language morphology, using a symbolically transcribed wordlist. It focuses on the case of languages approaching the introflectional type, such as Arabic or Hebrew. The morphology of such languages is traditionally described in terms of discontinuous units: consonantal roots and vocalic patterns. Inferring this kind of structure is a challenging task for current unsupervised learning systems, which generally operate with continuous units. In this study, the problem of learning root-and-pattern morphology is divided into a phonological and a morphological subproblem. The phonological component of the analysis seeks to partition the symbols of a corpus (phonemes, letters) into two subsets that correspond well with the phonetic definition of consonants and vowels; building around this result, the morphological component attempts to establish the list of roots and patterns in the corpus, and to infer the rules that govern their combinations. We assess the extent to which this can be done on the basis of two hypotheses: (i) the distinction between consonants and vowels can be learned by observing their tendency to alternate in speech; (ii) roots and patterns can be identified as sequences of the previously discovered consonants and vowels respectively. The proposed algorithm uses a purely distributional method for partitioning symbols. Then it applies analogical principles to identify a preliminary set of reliable roots and patterns, and gradually enlarge it. This extension process is guided by an evaluation procedure based on the minimum description length principle, in line with the approach to morphological learning embodied in LINGUISTICA (Goldsmith, 2001). The algorithm is implemented as a computer program named ARABICA; it is evaluated with regard to its ability to account for the system of plural formation in a corpus of Arabic nouns. This thesis shows that complex linguistic structures can be discovered without recourse to a rich set of a priori hypotheses about the phenomena under consideration. It illustrates the possible synergy between learning mechanisms operating at distinct levels of linguistic description, and attempts to determine where and why such a cooperation fails. It concludes that the tension between the universality of the consonant-vowel distinction and the specificity of root-and-pattern structure is crucial for understanding the advantages and weaknesses of this approach.